I recently discovered the following relation for arbitrary dr:
limk→∞limn→∞ n∑r=1dr(f(knr)kn)∼1ζ(s)∞∑r=1drrs⏟removable singularity×∫∞0f(x)dx
As s↗1 and ∫f(x)dx absolutely converges and f(∞)=f(0)=0
Some obvious choices are dr=1 , dr=srrs or dr=δ1,rs−1 where the R.H.S ≠0. Is there any possible use of this? (I was thinking along the lines of divergent series in QFT). I know this relation looks very bizzare so I've added a proof:
Proof
---
Consider an integral such that ∫∞0f(x)dx=C,where, f(x) is a smooth and continuous function and absolutely converges.
Now we raise both sides to the power s:
(∫∞0f(x)dx)s=Cs
We substitute x with rx to get:
(∫∞0f(rx)dx)s=(C/r)s
Multiplying both sides by an arbitrary coefficient:
(br)(∫∞0f(rx)dx)s=(br)(C/r)s
Taking their sum:
∞∑r=1br(∫∞0f(rx)dx)s=Cs∞∑r=1brrs⏟dirichlet series
We write the integral as a limit of a Riemann sum:
∞∑r=1limk→∞limn→∞ br(n∑x=1f(kxnr)kn)s=Cs∞∑r=1brrs
Using the mobius inversion formula:
∞∑r=1limk→∞limn→∞ br(n∑x=1f(kxnr)kn)s=Cs1ζ(s)∞∑r=1drrs
We define dr=∑e|rbe
Note:
(b11s+b22s+b33s+b44s+…)×(11s+12s+13s+14s+…)=b11s+b1+b22s+b1+b33s+b1+b2+b44s+…
Now focusing on the L.H.S (s↗1):
∞∑r=1limk→∞limn→∞ br(n∑x=1f(kxnr)kn)s∼∞∑r=1limk→∞limn→∞ br(n∑x=1f(kxnr)kn)
Focusing on the R.H.S of the asymptote:
limn→∞b1((f(kn)+f(2kn)+f(3kn)+f(4kn)+⋯)kn
+
limn→∞b2(0.f(kn)+f(2kn)+0.f(3kn)+f(4kn)+⋯)kn
+
⋮
=limn→∞(b1⏟d1(f(kn)+(b1+b2)⏟d2f(2kn)+(b1+b3)⏟d3f(3kn)+(b1+b2+b4)⏟d4f(4kn)+⋯)kn
Hence, for special dr the R.H.S converges:
limk→∞limn→∞ n∑r=1dr(f(knr)kn)∼lims→11ζ(s)∞∑r=1drrs⏟removable singularity×∫∞0f(x)dx