Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,082 questions , 2,232 unanswered
5,353 answers , 22,789 comments
1,470 users with positive rep
820 active unimported users
More ...

  Getting rid of negative norm states

+ 0 like - 0 dislike
1133 views

In Warren Siegel's Fields page 131 , He says that in order to get rid of the negative norm zero component of the vector wavefunction , we impose the constraint $S^{a}_{b}P_{a}+\omega P_{b}=0$ in analogy to the on-shell constraint $P^2+m^2=0$. I don't see how this can help us get rid of negative probability wavefunctions. 

asked Mar 6, 2017 in Theoretical Physics by anonymous [ no revision ]

I highly recommend you not to start learning QFT from Siegel's book. His approach is very... non-standard, and sometimes it is impossible to understand what he means. There are many much more accessible textbooks on QFT -- Srednicki, Peskin-Schroeder, Zee, etc.

I don't have time to analyze this problem in details, but it may be shown (as Siegel does in the second chapter of that section), that for the case of, for example, vector particle, this condition leads to the fact that its wave-function obeys Maxwell equations, which are gauge invariant. That invariance allows to gauge unphysical time-like component of the photon away.

I don't see how this can help us get rid of negative probability wavefunctions.

A constraint is an additional equation. Consider this constraint in the rest reference frame (${\bf{P}}=0$). It is imposing a certain value to an otherwise "arbitrary" or "independent" wave function component.  If the negative norm component becomes zero due to this condition, it stays "harmless" in the other reference frames due to relativistic invariance of expressions involving this norm.

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\varnothing$ysicsOverflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...