# In the semiclassical approximation, should I expand the generating functional around saddles of the sourced or the unsourced action?

+ 1 like - 0 dislike
688 views

Consider a Euclidean path integral say in a real scalar field theory.
$$\int d[\phi]\exp(-I[\phi])$$
In the semiclassical approximation we consider stationary points of the action, and expand around them. Now, consider I want to make a semiclassical expansion of the generating functional
$$Z[J]=\int d[\phi]\exp\bigg(-I[\phi]-\int d^4x\,J\phi\bigg)$$
I have a doubt, should I consider saddles of $I$ of all the sourced action?
$$I_J[\phi]\equiv I[\phi]+\int d^4x\,J\phi$$
Naively i would guess that I gotta take the saddles of the whole exponent, but
my biggest concern then is that if I take saddles of the sourced action, the stationary field configurations will in general have $J$ dependence, and thus after expanding the action around these stationary points $\phi_s$, taking functional derivatives of $Z$ with respect to $J$ will be very dirty since I will have $J$ dependence in every place I have a $\phi_s$.

So, saddles of the sourced or the unsourced action?

 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:p$\hbar$ysicsO$\varnothing$erflowThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). To avoid this verification in future, please log in or register.