Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,082 questions , 2,232 unanswered
5,354 answers , 22,789 comments
1,470 users with positive rep
820 active unimported users
More ...

  Can any body help me derive the very useful formula in physics?

+ 1 like - 0 dislike
2015 views

I read some books about high energy physics and string theory and I saw the following formula is used very frequently

I am not good at mathematics.

So can any one help me derive this formula?

asked Aug 12, 2017 in Mathematics by zeropoint (5 points) [ no revision ]
recategorized Aug 13, 2017 by Dilaton

See Brown, Quantum Field Theory.

1 Answer

+ 2 like - 0 dislike

Rewrite this as $\DeclareMathOperator{\tr}{tr} \ln \det \gamma = \tr \ln \gamma$. Then, we can switch to an eigenbasis of the matrix $\gamma$ and

$\ln \det \gamma = \sum_i \ln \lambda_i$

where $\lambda_i$ are the eigenvalues of $\gamma$. Since the eigenvalues of $\ln \gamma$ are $\ln \lambda_i$ we have

$\sum_i \ln \lambda_i = \tr \ln \gamma$

and thus

$\ln \det \gamma = \tr \ln \gamma$.

answered Aug 13, 2017 by trof (20 points) [ no revision ]

Thanks a lot @trof

$\gamma$ may not have an eigenbasis. However, the result can still be seen as true by writing $\gamma = PJP^{-1}$, where $J$ is the Jordan normal form of $\gamma$.

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ys$\varnothing$csOverflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...