I am reading the book called: "Gauge theory of elementary particle physics" by Ta-Pei Cheng and Ling-Fong Li.
On pages 19-20 they write: $(1.78) W[J] = \bigg[\exp(\int d^4x (\mathcal{L}_1 (\frac{\delta}{\delta J}))\bigg] W_0[J]$, where: $W_0[J]=\int [d\phi] \exp\bigg[ \int d^4x (\mathcal{L}_0+J\phi)\bigg]$.
Now, on page 20 they write:" The perturbative expansion in powers of $\mathcal{L}_1$ of the exponential in (1.78) gives:
$$(1.85) W[J] = W_0[J]\bigg\{ 1+\lambda\omega_1[J]+\lambda^2 \omega_2[J]+\ldots \bigg \},$$
where $$(1.86) \omega_1[J] = -\frac{1}{4!}W_0^{-1}[J]\bigg\{ \int d^4x \bigg[\frac{\delta}{\delta J(x)} \bigg]^4 \bigg\} W_0[J]$$
$$\omega_2[J]=-\frac{1}{2(4!)^2} W_0^{-1}[J]\bigg\{ \int d^4x \bigg[ \frac{\delta}{\delta J(x)}\bigg]^4\bigg\}^2 W_0[J] = $$
$$ = -\frac{1}{2(4!)} W_0^{-1}[J]\bigg\{ \int d^4x \bigg[\frac{\delta}{\delta J(x)}\bigg]^4\bigg\} \omega_1[J]$$
Now, for my question, after I plug $\omega_1[J]$ into the above last equation I get:
$$\frac{1}{2(4!)^2} W_0^{-1}[J]\{ \int d^4 x \bigg[ \frac{\delta}{\delta J(x)} \bigg]^4 \} W_0^{-1}[J] \{ \int d^4 x \bigg[ \frac{\delta}{\delta J(x)} \bigg]^4 \} W_0[J]$$
The last expression is not the same as the above expression, i.e. of $-\frac{1}{2(4!)^2} W_0^{-1}[J]\bigg\{ \int d^4x \bigg[ \frac{\delta}{\delta J(x)}\bigg]^4\bigg\}^2 W_0[J]$.
Perhaps instead of $\omega_1[J]$ it should be $-W_0[J] \omega_1[J]$ in equation (1.86)?
I am puzzled, what do you think?