Following the book of Friedrich "Dirac operators and riemannian geometry" (AMS, vol 25), I define the generalized Seiberg-Witten equations for $(A,A',\psi , \phi)$, with $A,A'$ two connections and $\psi, \phi$, two spinors:
1)
$D_A ( \psi)=0$
2)
$D_{A'} ( \phi)=0$
3)
$F_+ (A)=-(1/4) \omega (\psi)$
4)
$F_+ (A')=-(1/4) \omega (\phi)$
5)
$ A- A' = Im( \frac{d<\psi|\phi>}{<\psi|\phi>})$
$Im$ is the imaginary part of the complex number.
The gauge group $(h,h') \in Map(M,S^1)$ acts over the solutions of the generalized Seiberg-Witten equations:
$(h,h').(A,A',\psi,\phi)=((1/h)^* A, (1/{h'})^* A', h \psi, h' \phi )$
We have compact moduli spaces because it is a closed set in the product of two compact sets (the SW moduli spaces).
Moreover, the situation can perhaps be generalized to $n$ solutions of the Seiberg-Witten equations $(A_i ,\psi_i )$:
1)
$D_{A_i}( \psi_i)=0$
2)
$F_+(A_i)= -(1/4) \omega (\psi_i)$
3)
$ A_i- A_j=Im( \frac{d<\psi_i|\psi_j>}{<\psi_i|\psi_j>})$