Let $(M,g)$ be a riemannian manifold of 4 dimension. Let $ a\in \Lambda_+$ and $b\in \Lambda^1$. The Seiberg-Witten equations for forms are: $$da+b\wedge a=0$$ $$db_+=\frac{a}{||a||}$$ The gauge group acts : $$f.(a,b)=(fa,b-df/f)$$ Can we define invariants?