# Derivation of Casher-Banks relation

+ 2 like - 0 dislike
149 views

Consider the fermion condensate in gauge theory:
$$\langle \bar{f}f\rangle = -i\int d^{4}x\text{Tr}[S(x,x)]$$

where
$$S(x,y) = \langle x |D^{-1}(x,y)|y\rangle$$

is the fermion propagator and $D$ is the Dirac operator including the fermion mass $m$. Using the spectral representation of the Dirac operator,
$$D(x,y) = \sum_{\lambda}\frac{\psi(x)\psi^{\dagger}(y)}{\lambda + im},$$

one finds

$$\langle \bar{f}f\rangle = \sum_{\lambda}\frac{1}{\lambda + im}$$

How to obtain from this expression the Casher-Banks relation $\langle \bar{f}f\rangle = \pi \rho(\lambda = 0)$, where $\rho$ is the spectral density?

asked Jul 25, 2018
edited Jul 25, 2018

## 1 Answer

+ 1 like - 0 dislike

You have to use the limit result which says :

$\text{Lim}_{m \to 0} \frac{1}{m + i \lambda} = \pi \delta(\lambda) - i \mathcal{P} (\frac{1}{\lambda})$,

here $\mathcal{P}$ is the principal value

$\langle \overline{\psi} \psi \rangle = \int_{-\infty}^{+\infty} d\lambda ~ \rho(\lambda) \frac{1}{m + i \lambda} = \pi \rho(0)$

answered Jul 27, 2018 by (30 points)

## Your answer

 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:p$\hbar$ys$\varnothing$csOverflowThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). To avoid this verification in future, please log in or register.