Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

173 submissions , 136 unreviewed
4,271 questions , 1,618 unanswered
5,070 answers , 21,535 comments
1,470 users with positive rep
623 active unimported users
More ...

  What is the spatial profile of fluid infiltration within an anisotropic medium?

+ 0 like - 0 dislike
40 views

Starting at time $t = 0$, a unit of compressible fluid of volume $v$ and density $\rho_f$ is pumped into a medium at some location $\mathbf{r}_0$. Initially, the density $\rho_m(0)$ and pressure $P_m(0)$ of the medium are constant everywhere; furthermore, $\rho_f = a\rho_m (0)$ and $P_f = bP_m(0)$ where $a >>1$ and $b << 1$. The medium is anisotropic, such that the fluid is $x$ times more likely to diffuse along $\hat{\mathbf{z}}$ than along all other directions. The time rate of fluid delivery decreases with the amount of stress exerted by fluid already delivered into the surrounding medium. [1]. After how much time does fluid delivery end? [2]. Over what total volume $V$ has the fluid diffused? [3]. What is the shape of $V$?

asked Dec 18, 2018 in Applied Physics by AI (0 points) [ no revision ]

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ysicsOv$\varnothing$rflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
To avoid this verification in future, please log in or register.




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...