Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

206 submissions , 164 unreviewed
5,103 questions , 2,249 unanswered
5,355 answers , 22,801 comments
1,470 users with positive rep
820 active unimported users
More ...

  Regularization by Test Function

Originality
+ 0 - 0
Accuracy
+ 1 - 0
Score
1.00
2474 views
Referee this paper: [arXiv:1406.5742]

Please use comments to point to previous work in this direction, and reviews to referee the accuracy of the paper. Feel free to edit this submission to summarise the paper (just click on edit, your summary will then appear under the horizontal line)

(Is this your paper?)


From: Peter Morgan <peter.w.morgan@yale.edu>
Title: Regularization by Test Function
Authors: Peter Morgan
Categories: quant-ph hep-th
Comments: 7 pages. Some text adapted from arXiv:1211.2831v2 [math-ph]
\\
Quantum fields are generally taken to be operator-valued distributions, linear functionals of test functions into an algebra of operators; here the effective dynamics of an interacting quantum field is taken to be nonlinearly modified by properties of test functions, in a way that preserves Poincar\'e invariance, microcausality, and the Fock-Hilbert space structure of the free field. The construction can be taken to be a physically comprehensible regularization because we can introduce a sequence that has a limit that is a conventional interacting quantum field, with the usual informal dependence of the effective dynamics on properties of the experimental apparatus made formally explicit as a dependence on the test functions that are used to model the experimental apparatus.

In descriptions of interacting QFT, the "measurement scale", "renormalization scale", etc., of an experiment are repeatedly invoked, but they are always informally related to the experimental apparatus. That informality is unnecessary, as well as contrary to the detailed specificity we usually expect in Physics, insofar as the test functions (generally in a Schwartz space of functions that are smooth both in real space and in fourier space) that are used to describe experimental apparatus in detail can provide formal measures of the "measurement scale" of each individual measurement operator, and hence of the measurement scale of the model of an experimental apparatus as a whole.

The idea that there is a renormalization scale that is independent of the test functions that are used to model an experiment appears to be a consequence of the idealization that the test functions are always point-like, either in real space or in fourier space, whereas detailed discussions of QFT always introduce smooth real-space cutoffs (for example, at T and at -T at very large times), which could instead (and, I would say, could more properly) be subsumed into the test functions that model the experimental apparatus.

Once we take the renormalization scale to be a function of the test functions instead of independent of the test functions, an interacting QFT is (at least weakly) nonlinearly dependent on the test functions. Admitting this gives us a considerable variety of well-defined quantum field theories, which I cannot yet characterize, but for which I can point out a number of examples (but definitely not all examples), some of which can be understood to be a new, formal, and physically comprehensible regularization. A curious interpretation becomes possible, that details of an experimental apparatus "conditions" the dynamics of the interaction in the region of space-time that it prepares and measures. One interest of this approach is that it suggests that we should experimentally determine what the conditioning of the dynamics is for any given test function.

summarized by Peter Morgan
paper authored Jun 21, 2014 to Reviews I by Peter Morgan
  • [ revision history ]
    edited Jun 24, 2014 by Peter Morgan

    To the references I propose to add:

    1. M V Altaisky, "Quantum field theory without divergences", PHYSICAL REVIEW D 81, 125003 (2010). DOI: 10.1103/PhysRevD.81.125003
    2. H Bostelmann, C D’Antoni, G Morsella, "Scaling Algebras and Pointlike Fields", Commun. Math. Phys. 285, 763–798 (2009). DOI: 10.1007/s00220-008-0613-3

    The first introduces wavelets as a way to regularize QFT; it's rather messy, IMHO, and microcausality is not preserved, AFAICT, but definitely related. The second is very much AQFT, with proofs but not constructive enough (in contrast to my own stuff, constructive but not enough proofs — I'm not yet sure what to say about how this article is related to my article, however).

    1 Review

    + 0 like - 0 dislike

    Three things come to my mind in this respect:

    1) Regularization, whatever it is, is not sufficient at all to get the physically meaningful results. One still needs renormalizations and soft quanta summations.

    2) Some sort of "softening" the "test functions" has been considered by J. Schwinger in his books "Particles, Sources, and Fields" V1 - V3, I guess.

    3) Use of too long phrases like "The construction can be taken to be a physically comprehensible regularization because we can introduce a sequence that has a limit that is a conventional interacting quantum field, with the usual informal dependence of the effective dynamics on properties of the experimental apparatus made formally explicit as a dependence on the test functions that are used to model the experimental apparatus." makes quick reading and comprehension difficult. It reminds me "Atlanta Nights" with "Yvonne Perrin stood up and walked over to the waiter and took the shot glass full of vodka and poured it out into a planter that held a spindly rubber tree that never got enough light to grow properly even though it was near one of the windows that looked out onto the lake where some ducks were floating like they were waiting for someone to throw them some bread but there was nobody there at this time of day."

    reviewed Nov 30, 2018 by Vladimir Kalitvianski (102 points) [ no revision ]

    Your Review:

    Please use reviews only to (at least partly) review submissions. To comment, discuss, or ask for clarification, leave a comment instead.
    To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
    Please consult the FAQ for as to how to format your post.
    This is the review box; if you want to write a comment instead, please use the 'add comment' button.
    Live preview (may slow down editor)   Preview
    Your name to display (optional):
    Privacy: Your email address will only be used for sending these notifications.
    Anti-spam verification:
    If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
    p$\varnothing$ysicsOverflow
    Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
    Please complete the anti-spam verification




    user contributions licensed under cc by-sa 3.0 with attribution required

    Your rights
    ...