Let fabc be a constant which is totally anti-symmetric with respect to indices a, b and c. Let ψa, ψb, ψc and ϵ be Grassmann-valued Majorana fermions. How to prove the following famous identity?
fabc(ˉϵγμψa)(ˉψbγμψc)=0
I am trying to use the Fierz identity show the following equation:
fabc(ˉϵγμψa)(ˉψbγμψc)=fabc(ˉϵγμψb)(ˉψaγμψc).
Then, using cyclic permutation symmetry of fabc, one has (1).
My calculation goes as follows, but I cannot find where I made mistakes.
fabc(ˉϵγμψa)(ˉψbγμψc)=fabcˉϵγμ[(ψaˉψb)(γμψc)]
The Fierz identity is
(λˉρ)χ=−14(ˉλχ)ρ−14(ˉλγμχ)(γμρ)−14(ˉλγ5χ)(γ5ρ)+14(ˉλγμγ5χ)(γμγ5ρ)+18(ˉλγμνχ)(γμνρ)
where λ, ρ, χ are three arbitrary Grassmann-valued Majorana 4-spinors.
Using the above identity, one has
fabcˉϵγμ[(ψaˉψb)(γμψc)]=fabcˉϵγμ[−14(ˉψaγμψc)ψb−14(ˉψaγργμψc)(γρψb)−14(ψaγ5γμψc)(γ5ψb)+14(ˉψaγργ5γμψc)(γργ5ψb)+18(ˉψaγρσγμψc)(γρσψb)]
Since
(ˉψaγργμψc)=(ˉψcγργμψa),(ˉψaγ5γμψc)=(ˉψcγ5γμψa),
The second and third terms in (4.1) vanish. One ends up with
fabcˉϵγμ[(ψaˉψb)(γμψc)]=fabcˉϵγμ[−14(ˉψaγμψc)ψb+14(ˉψaγργ5γμψc)(γργ5ψb)+18(ˉψaγρσγμψc)(γρσψb)]
The last term in the above expression can be simplified by using the identity.
γρσγμ=γρσμ+ησμγρ−ηρμγσ=ϵρσμλγλγ5++ησμγρ−ηρμγσ
Thus,
18(ˉψaγρσγμψc)(γρσψb)=18[ˉψa(ϵρσμλγλγ5+ησμγρ−ηρμγσ)ψc]γρσψb=18ϵρσμλ(ˉψaγλγ5ψc)γρσψb+18(ˉψaγρψc)γρσησμψb−18(ˉψaγσψc)γρσηρμψb.
Thus,
18ˉϵγμ(ˉψaγρσγμψc)γρσψb=18(ˉϵγμγρσψb)(ˉψaγρσγμψc)=18ϵρσμλ(ˉϵγμγρσψb)(ˉψaγλγ5ψc)+18(ˉϵγσγρσψb)(ˉψaγρψc)−18(ˉϵγργρσψb)(ˉψaγσψc)
Since (ˉψaγλγ5ψc)=(ˉψcγλγ5ψa), the first term in the above line does not contribute. The last two terms are equal due to the anti-symmetry of γρσ.
From (5), one finds
γσγρσ=ησαγαγρσ=−3γρ
Thus,
18ˉϵγμ(ˉψaγρσγμψc)γρσψb=18ϵρσμλ(ˉϵγμγρσψb)(ˉψaγλγ5ψc)−34(ˉψaγρψc)(ˉϵγρψb)
Plugging the above result into (4.2), one finds
fabcˉϵγμ[(ψaˉψb)(γμψc)]=fabcˉϵγμ[−14(ˉψaγμψc)ψb+14(ˉψaγργ5γμψc)(γργ5ψb)+18(ˉψaγρσγμψc)(γρσψb)]=fabcˉϵγμ[−14(ˉψaγμψc)ψb+14(ˉψaγργ5γμψc)(γργ5ψb)]−34fabc(ˉψaγρψc)(ˉϵγρψb)+18fabcϵρσμλ(ˉϵγμγρσψb)(ˉψaγλγ5ψc)=−fabc(ˉψaγμψc)(ˉϵγμψb)−14fabc(ˉψaγργμγ5ψc)(ˉϵγμγργ5ψb).
For the last term, one can use the identity
ˉψaγργμγ5ψc=−ˉψcγ5γμγρψa=−ˉψc(2ημργ5−γργμγ5)ψa,
which implies
ˉψaγργμγ5ψc−ˉψcγργμγ5ψa=−2ημρˉψcγ5ψa.
Thus,
fabcˉϵγμ[(ψaˉψb)(γμψc)]=−fabc(ˉψaγμψc)(ˉϵγμψb)−14fabc(ˉψaγργμγ5ψc)(ˉϵγμγργ5ψb)=−fabc(ˉψaγμψc)(ˉϵγμψb)−18[fabc(ˉψaγργμγ5ψc)+fcba(ˉψcγργμγ5ψa)](ˉϵγμγργ5ψb)=−fabc(ˉψaγμψc)(ˉϵγμψb)−18[fabc(ˉψaγργμγ5ψc)−fabc(ˉψcγργμγ5ψa)](ˉϵγμγργ5ψb)=−fabc(ˉψaγμψc)(ˉϵγμψb)−18fabc[−2ημρˉψcγ5ψa](ˉϵγμγργ5ψb)
But since ˉψcγ5ψa=ˉψaγ5ψc, the last term in the above expression vanish. Thus, one ends up with
fabc(ˉϵγμψa)(ˉψbγμψc)=fabcˉϵγμ[(ψaˉψb)(γμψc)]=−fabc(ˉψaγμψc)(ˉϵγμψb)=fabc(ˉψcγμψa)(ˉϵγμψb),
which is trivially correct due to the cyclic property of fabc.
Other than using the Fierz identity to rearrange the spinors, I cannot find any other way to prove equation (1).
Did I make any mistakes in the above derivations?
If not, how to prove (1)?