Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

180 submissions , 140 unreviewed
4,534 questions , 1,819 unanswered
5,159 answers , 21,954 comments
1,470 users with positive rep
720 active unimported users
More ...

  Does this work for one single state?

+ 0 like - 0 dislike
27 views

If I understand your answer correctly, you are considering something like an ensemble of states? In that case, of course you can simply count the branches into which the state may split. I suppose its equivalent to checking some thermodynamic function of the ensemble, that will tell you about the degrees of freedom. But I was actually interested in the quantum mechanics of a single state of a single system in a single instance. For example you measure some property of the system such that it will be in state that is degenerate, say the energy of the electron in the H-Atom, such that its spin-state will be degenerate. Now can you apply some operator on that state function that gives you eigenvalue 2 and leaves the state function as it is. In this case its obviously the spin-multiplicity, in other cases it will be the angular momentum. But what about the general case? Are there any operators in general that can do the job?

asked Jul 29 in Q&A by raphael.berger@sbg.ac.at [ no revision ]

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ysicsOverfl$\varnothing$w
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
To avoid this verification in future, please log in or register.




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...