We know that two SU(2) fundamentals have multiplication decompositions, such that $$ 2 \otimes 2= 1 \oplus 3.$$
In particular, the 3 has a vector representation of SO(3). While the 1 is the trivial representation of SU(2).
I hope to see the precise SO(3) rotation from the two SU(2) fundamental rotations.
-
So let us first write two SU(2) fundamental objects in terms of an SO(3) object. In particular, we can consider the following three:
$$
|1,1\rangle= \begin{pmatrix}
1\\
0
\end{pmatrix}\begin{pmatrix}
1\\
0
\end{pmatrix}= | \uparrow \uparrow \rangle,$$
$$|1,0\rangle
={1 \over \sqrt{2} }
(\begin{pmatrix}
1\\
0
\end{pmatrix}
\begin{pmatrix}
0\\
1
\end{pmatrix}
+
\begin{pmatrix}
0\\
1
\end{pmatrix}
\begin{pmatrix}
1\\
0
\end{pmatrix})={1 \over \sqrt{2} }(| \uparrow \downarrow \rangle+ | \downarrow \uparrow \rangle)
,$$
$$|1,-1\rangle = \begin{pmatrix}
0\\
1
\end{pmatrix}\begin{pmatrix}
0\\
1
\end{pmatrix}= | \downarrow \downarrow \rangle.
$$
where the $| \uparrow \rangle$ and $ \downarrow \rangle$ are in SU(2) fundamentals. And we shothand
$| \uparrow \uparrow \rangle \equiv | \uparrow \rangle |\uparrow \rangle $ and so on.
question: How do we rotate between $|1,1\rangle$, $|1,0\rangle$, $|1,-1\rangle$, via two SU(2) rotations acting on two SU(2) fundamentals? Namely, that is, construct an SO(3) rotation inside the two SU(2) fundamental rotations?
The SU(2) has three generators, parametrized by $m_x,m_y,m_z$; how do we write down the generic SO(3) rotations from two SU(2) rotations?
Let us consider an example, an SU(2) rotation $U$ acting on the SU(2) fundamental $\begin{pmatrix}
1\\
0
\end{pmatrix}$ give rise to
$$
U \begin{pmatrix}
1\\
0
\end{pmatrix}=
\begin{pmatrix}
\cos(\frac{\theta}{2})+{i m_z} \sin(\frac{\theta}{2}) & (i m_x -m_y) \sin(\frac{\theta}{2}) \\
(i m_x +m_y) \sin(\frac{\theta}{2}) & \cos(\frac{\theta}{2})-{i m_z} \sin(\frac{\theta}{2}) \\
\end{pmatrix}
\begin{pmatrix}
1\\
0
\end{pmatrix}=
\begin{pmatrix}
\cos(\frac{\theta}{2})+{i m_z} \sin(\frac{\theta}{2})\\
(i m_x +m_y) \sin(\frac{\theta}{2})
\end{pmatrix}
\equiv\cos(\frac{\theta}{2})+{i m_z} \sin(\frac{\theta}{2})
\begin{pmatrix}
1\\
0
\end{pmatrix}
+
(i m_x +m_y) \sin(\frac{\theta}{2})
\begin{pmatrix}
0\\
1
\end{pmatrix}
$$
In other words, the SU(2) rotation $U$ (with the $|\vec{m}|^2=1$) rotates SU(2) fundamentals. Two SU(2) rotations act as
$$
UU|1,1\rangle =
U \begin{pmatrix}
1\\
0
\end{pmatrix}U \begin{pmatrix}
1\\
0
\end{pmatrix}
=
\begin{pmatrix}
\cos(\frac{\theta}{2})+{i m_z} \sin(\frac{\theta}{2})\\
(i m_x +m_y) \sin(\frac{\theta}{2})
\end{pmatrix}\begin{pmatrix}
\cos(\frac{\theta}{2})+{i m_z} \sin(\frac{\theta}{2})\\
(i m_x +m_y) \sin(\frac{\theta}{2})
\end{pmatrix}
$$
Hint: Naively, we like to construct
$$
L_{\pm} =L_{x} \pm i L_y,
$$ such that $L_{\pm}$ is an operator out of two SU(2) rotations acting on two SU(2) fundamentals, such that it raises/lowers between $|1,1\rangle$, $|1,0\rangle$, $|1,-1\rangle$.
question 2: Is it plausible that two SU(2) are impossible to perform such SO(3) rotations, but we need two U(2) rotations?
This post imported from StackExchange Physics at 2020-11-06 18:48 (UTC), posted by SE-user annie marie heart