Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

206 submissions , 164 unreviewed
5,103 questions , 2,249 unanswered
5,355 answers , 22,801 comments
1,470 users with positive rep
820 active unimported users
More ...

  Quasilocal Formalism and Computations in Kerr Black Hole

+ 1 like - 0 dislike
740 views

Hi everyone,
I was reading an article about quasilocal formalism and calculations in a Kerr BH ( this:<https://arxiv.org/pdf/hep-th/0102001.pdf>). I was trying to reproduce the results obtained on it, but I found an expresion that I can't understand: (eq. 8).

$$ Q^{ij}= \frac{\sqrt{-\gamma}}{16\pi}\frac{\partial \mathcal{L}_{ct}}{\partial \gamma_{ij}}$$

where $\gamma_{ij}$ is the metric induced in a surface of $r=constant$ (with spacetime Kerr metric), $\gamma$ is the determinant of $\gamma_{ij}$  and $I_{ct}$ is:

$$I_{ct}=2\sqrt{2}\int_{\partial \mathcal{M}}d^{3}x\sqrt{-\gamma}\sqrt{\mathcal{R}(\gamma)}$$

The resulting $Q^{ij}$ obtained in the paper for a Kerr BH is the following (eq. 23 and eq. 24):

$$Q^{ij}=Q^{ij}_{2}+Q^{ij}_{3}$$

$$Q^{ij}_{2}= \frac{\sqrt{-\gamma}}{16\pi} \sqrt{\frac{2}{\mathcal{R}}}(R^{ij}-\mathcal{R}\gamma^{ij})$$

$$Q^{ij}_{3}=\frac{\sqrt{-\gamma}}{16\pi}\frac{1}{\sqrt{2}}\left( \nabla_{a}(\nabla^{a}\mathcal{R}^{-1/2})\gamma^{ij} - \frac{1}{2}\nabla^{(i}(\nabla^{j)}\mathcal{R}^{-1/2})\right)$$

My understanding in partial derivatives is that a partial derivative of a function of several variables is its derivative with respect to one of those variables. Then my problem is that I can't understand what's the operation $\frac{\partial \mathcal{L}_{ct}}{\partial \gamma_{ij}}$ and I can't obtain the $Q^{ij}_{2}$ and $Q^{ij}_{3}$. I was wondering if anyone could explain me what's the meaning of this equation or how can I compute this?

Thanks for everything!

asked Mar 8, 2021 in Theoretical Physics by Drjackal [ no revision ]
recategorized Mar 11, 2021 by Dilaton

The term is reminiscent of a stress-energy tensor, or maybe it's just a simple variation. Could you elaborate on what part you don't understand?

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
$\varnothing\hbar$ysicsOverflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...