# Potential function of a metric

+ 0 like - 1 dislike
441 views

Let $(M,g)$ be a riemannian manifold with Levi-Civita connection $\nabla$. When does it exist locally a potential function $\phi$ for the metric $g$? When is $g$, the Hessian of $\phi$?

$$g(X,Y)= (XY+YX-\nabla_X Y- \nabla_Y X)\phi$$

edited Nov 22, 2021

+ 1 like - 0 dislike

So, $g$ must be symmetric in local coordinates.

In order for $g$ to be locally the Jacobian of a vector field $X = (X_1, X_2, \ldots, X_n)$, we must have that there are functions $f_i(x_1, x_2, \ldots, \hat{x}_i, \ldots x_n)$ for all $i$ with $\displaystyle g_{i,j} = \frac{\partial}{\partial_j}\left(\int g_{i,i}\ dx_i +f_i\right) = \frac{\partial}{\partial_i}\left(\int g_{j,j}\ dx_i +f_j\right)$ for all $i \ne j$. $X$ will then be $\displaystyle \left(\int g_{1,1}\ dx_1 + f_1, \ldots, \int g_{n,n}\ dx_n + f_n\right)$

Then, to answer your question, $X$ must itself be a gradient field; this will happen locally if and only if the 1-form $\omega = X^{\flat}$ (musical isomorphism) has its exterior derivative $\eta = d\omega$ equal to 0 (this functions as a "curl" of the vector field). answered Jul 27 by Jeffrey Rolland
edited Jul 27
+ 0 like - 0 dislike

From your definition of potential we have

$$g(X,Y)=-\big((\nabla_XY)+(\nabla_YX)\big)\phi$$

The formula has to apply (locally) for any vectors $X$ and $Y$. Consider a time-like geodesic with tangent vector $U$. Choose $X=U$, $Y=U$. We have a contradiction.

answered Nov 21, 2021 by (80 points)

 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:p$\hbar$ysicsOv$\varnothing$rflowThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). Please complete the anti-spam verification