Let $(M,\omega)$ be a Kaehler manifold with Kaehler form $\omega$ and curvature of the Chern connection $R_{\nabla}$, then I define a Chern-Kaehler flow II :
$$\frac{\partial \omega}{\partial t}= d(\sum_i (d^* R_{\nabla} (e_i) e_i)^*)$$
Can we have solutions for the Chern-Kaehler flow II for short time?