# Operator-State Correspondence in CFT

+ 1 like - 0 dislike
174 views

I'm trying to understand a proper derivation of the operator-state map in CFT. Here is what I think I've understood so far, which is mostly based on David Tong's string theory lectures, and a little of Polchinski volume 1.

We consider a generic state in the Schrödinger representation, obtained from evolving some initial wavefunction $\Psi_i[\phi_i]$ at time $t_i$ to some time $t_f$ via the path integral

$$\Psi_f[\phi_f] = \int\mathcal{D}\phi_i\int_{\phi_i}^{\phi_f}\mathcal{D}\phi\, e^{-S[\phi]} \Psi_i[\phi_i]$$

where the inner integral with goes over all configurations with boundary condition $\phi(t_i) \equiv \phi_i$, $\phi(t_f) \equiv \phi_f$, and the outer one integrates over all boundary configurations $\phi_i$.

We can then take the limit $t_i\to-\infty$, which in radial quantization corresponds to sending $r\to0$, which just corresponds to the origin. The wave function then looks like

$$\Psi_f[\phi_f] = \int^{\phi_f}\mathcal{D}\phi\, e^{-S[\phi]} \mathcal{O}(0).$$

where we have renamed the initial condition $\Psi[\mathrm{const}]$ to $\mathcal{O}(0)$ (which we can do, since it is just a constant). This then looks like a cutout of a correlation function involving a local operator $\mathcal{O}(0)$, which justifies interchanging states and local operators inside correlation functions, where the state corresponds to $\mathcal{O}(0) | 0 \rangle$ (where $|0\rangle$ is the state corresponding to the identity operator).

However there are a few things I don't really understand yet.

- Where does the necessity for conformal invariance come in? Evidently we need radial quantization for this to work, but afaik, I can in principle apply radial quantization to any Euclidean field theory, conformal or not (maybe this is what I'm getting wrong?).

- This gets us a correspondence between states and local operators, but generally in CFT what we really want is a more specific correspondence between dilation eigenstates $|\Delta\rangle$ and primary (or quasi-primary in 2d) operators $\mathcal{O}_\Delta(x)$. How does this follow from the above formulation? Is the idea that I can, if $|\Delta\rangle$ is a dilation eigenstate, always extend $\mathcal{O}(0)$ to a corresponding unique primary operator $\mathcal{O}_\Delta(x)$ through a translation?

Would be very grateful for some explanations!

P.S. I only really want to apply it to 2d CFT but I've kept the notation more general, in case the higher dimensional case is a better starting point for some people. I hope I haven't made any mistakes in my formulation.

 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:$\varnothing\hbar$ysicsOverflowThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). To avoid this verification in future, please log in or register.