The energy in general relativity is:
$$E=\gamma m c^2$$
where $\gamma = \frac{1}{\sqrt{1-\frac{v^2}{c^2}}}$
so that it can be quantized by the Hamiltonian:
$$H=mc^2\frac{1}{\sqrt{1-\frac{\Delta}{c^2}}}$$
where $\Delta$ is the Laplacian, if $\Delta<c^2$. In the case $\Delta>c^2$, we have to take:
$$H=mc^3\frac{1}{\sqrt{1-\frac{c^2}{\Delta}}} \sqrt{\Delta^{-1}}$$
Can we make a theory of quantum relativity with this Hamiltonian?