An approximate formula for the gravitational vector potential is given by Mashhoon 2008:
$$
(V_j) \approx G\, \frac{\pmb{J} \times \pmb{r}}{r^3}
$$
where $G$ is the gravitational constant, $\pmb{J}$ the rotational momentum of the Earth, and $\pmb{r}=(x,y,z)$ (there's an additional $c$ factor in Mashhoon's formula, but that's included in the $c^3$ factor in the original question).
Using the values $G\approx 6.67\cdot 10^{11}\,\mathrm{m^3/(kg\,s^2)}$, $c=299\,792\,458\,\mathrm{m/s}$, $J\approx 7\cdot 10^{33}\,\mathrm{kg\,m^2/s}\ (0,0,1)$, and taking a point roughly on the equator with $x=R,y=0,z=0$, where $R\approx 6.38\cdot 10^6\,\mathrm{m}$ is Earth's radius, we obtain
$$
\frac{1}{c^3}\,(V_j) \approx
(0,\ 4\cdot 10^{-16},\ 0)
\qquad
\frac{1}{c^3}\,\biggl(\frac{V_i}{x^j}\biggr)_{ij}
\approx
\begin{bmatrix}
0 & -7\cdot 10^{-23} & 0
\\\\
-1\cdot 10^{-22} & 0 & 0
\\\\
0&0&0
\end{bmatrix}
\ \mathrm{m^{-1}}
$$
The formula given in Mashhoon is valid "far from the source", so not valid for a point at the equator. But the estimates above should give a rough initial idea.
This post imported from StackExchange Physics at 2025-01-21 21:50 (UTC), posted by SE-user pglpm