I am trying to reproduce equation 4.23 in this reference Path integral for gauge theories with fermions. It is a computation for gravitational anomaly using the Fujikawa method. I understand,
132π4Trγ5∫d4k(12D2D2f″(k2)+23kμkν(D2DμDν+DμD2Dν+DμDνD2)f‴(k2)+23kμkνkαkβDμDνDαDβfiv(k2))
Using
k2=ξ, gives
∫d4k=π2∫∞0√gk2dk2=π2∫√gξdξ,
and
f(∞)=f′(∞)=f″(∞)=...=0,
f(0)=1. Using integration by parts
∫∞0dξξf″(ξ)=1,∫∞0dξξ2f″(ξ)=−2,∫∞0dξξ3fiv(ξ)=6.
I finally obtain,
Trγ5√g32π2(12D2D2−43(2D2D2+DμD2Dμ)+4(D2D2+DμD2Dμ+DμDνDμDν)
I don't see how this finally gives √g1192π2Tr(γ5[Dμ,Dν][DμDν]).