First, I will translate the relevant passages in your paper from mathematese.
The argument in your reference
You are studying an X-Y model with the constraint that neighboring spins have to always be within a certain angle of each other. You define the collection of statistical-mechanics Gibbs distributions using a given boundary condition at infinity, as the boundaries get further and further away. Then you note that if the field at the boundary makes the spin turn around from top to bottom the maximum possible amount, then the spins are locked in place--- they can't move, because they need to make a certain winding, and they unless they are at the maximum possible angle, they can't make the winding.
Using these boundary conditions, there is no free energy, there is no thermodynamics, there is no spin-wave limit, and the Mermin Wagner theorem fails.
You also claim that the theorem fails with a translation invariant measure, which is just given by averaging the same thing over different centers. You attempt to make the thing more physical by allowing the boundary condition to fluctuate around the mean by a little bit $\delta$. But in order to keep the boundary winding condition tight, as the size of the box $N$ goes to infinity, $\delta$ must shrink as $1\over N$, and the resulting Free energy of your configuration will always be subextensive in the infinite system limit. If $\delta$ does not shrink, the configurations will always randomize their angles, as the Mermin-Wagner theorem says.
The failures of the Mermin-Wagner theorem are all coming from this physically impossible boundary situation, not really from the singular potentials. By forcing the number of allowed configurations to be exactly 1 for all intents and purposes, you are creating a situation where each different average value of the angle has a completely disjoint representative in the thermodynamic limit. This makes the energy as a function of the average angle discontinuous (actually, the energy is infinite except for near one configuration), and makes it impossible to set up spin waves.
This type of argument has a 1d analog, where the analog to Mermin-Wagner is much easier to prove.
1-dimensional mechanical analogy
To see that this result isn't Mermin-Wagner's fault, consider the much easier one-dimensional theorem--- there can be no 1d solid (long range translational order). If you make a potential between points which is infinite at a certain distance D, you can break this theorem too.
What you do is you impose the condition that there are N particles, and the N-th particle is at a distance ND from the first. Then the particles are forced to be right on the edge of the infinite well, and you get the same violation: you form a 1d crystal only by imposing boundary conditions on a translation invariant potential.
The argument in 1d that there can be no crystal order comes from noting that a local defect will shift the average position arbitrarily far out, so as you add more defects, you will wash out the positional order.
Mermin-Wagner is not affected
The standard arguments for the Mermin-Wagner theorem do not need modification. They are assuming that there is an actual thermoodynamic system, with a nonzero extensive free energy, an entropy proportional to the volume, and this is violated by your example. The case of exactly zero temperature is also somewhat analogous--- it has no extensive entropy, and at exactly zero temperature, you do break the symmetry.
If you have an extensive entropy, there is a marvelous overlap property which is central to how physicists demonstrate the smoothness of the macroscopic free-energy. The Gibbs distribution at two angles infinitesimally separated sum over almost the same exact configurations (in the sense that for a small enough angle, you can't tell locally that it changed, because the local fluctuations swamp the average, so the local configurations don't notice)
The enormous, nearly complete, overlap between the configurations at neighboring angles demonstrates that the thermodynamic average potentials are much much smoother than the possibly singular potentials that enter into the microscopic description. You always get a quadratic spin-wave density, including in the case of the model you mention, whenever you have an extensive free energy.
Once you have a quadratic spin-wave energy, the Mermin Wagner theorem follows.
Quick answer
the Gibbs distributions for orientation $\theta$ and the Gibbs distributions for orientation $\theta'$ always include locally overlapping configurations as $\theta$ approaches $\theta'$. This assumption fails in your example, because even an infinitesimal change in angle for the boundary condition changes the configurations completely, because they do not have extensive entropy, and are locked to within a $\delta$, shrinking with system size, of an unphysically constrained configuration.
This post has been migrated from (A51.SE)