The spectrum of the Type II string theory (both IIA and IIB) is given by: \begin{array}{*{20}{c}} \hline & {{\text{Sector}}}& & {{\text{Spectrum}}}& & {{\text{Massless Fields}}} & \\ \hline & {{\text{R}} - \operatorname{R} }& & {{{\mathbf{8}}_s} \otimes {{\mathbf{8}}_s}}& & {{C_0},{C_1},{C_2},{C_3}{C_4},...} & \\ \hline & {{\text{NS}} - {\text{NS}}}& & {{{\mathbf{8}}_v} \otimes {{\mathbf{8}}_v}}& & {{g_{\mu \nu }},{F_{\mu \nu }},\Phi ,...} & \\ \hline & {{\text{R}} - {\text{NS}}}& & {{{\mathbf{8}}_s} \otimes {{\mathbf{8}}_v}}& & {{{\Psi '}_\mu },\lambda ',...} & \\ \hline & {{\text{NS}} - {\text{R}}}& & {{{\mathbf{8}}_v} \otimes {{\mathbf{8}}_s}}& & {{\Psi _\mu },\lambda ,...} & \hline \end{array}

I know that for the Ramond-Ramond fields, the even ones belong to the Type IIB string theory and the odd ones belong to the Type IIA string theory.

But what about the rest? Are they there in both Type II string theories? I think it should be the case, because the choice of the GSO projection is only for the R-R sector.