Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,082 questions , 2,232 unanswered
5,354 answers , 22,789 comments
1,470 users with positive rep
820 active unimported users
More ...

  Hawking Radiation from the WKB Approximation

+ 6 like - 0 dislike
1016 views

Reading this paper which is itself an exposition of Parikh and Wilczek's paper, I get to a point where I fail to be able to follow the calculation. Now this is undoubtably because my calculational skills have been affected by decades of atrophy, so I wonder if someone can help. The paper computes the tunneling transmission coefficient for a particle (part of a particle/antiparticle pair) created just inside the horizon. The WKB transmission coefficient is given by $$T = exp({-\frac{2}{\hbar} Im(S)})$$ where "Im" is the imaginary part, and the action, $S$, is evaluated over the classically forbidden region. Using Painleve-Gullstrand coordinates for the black hole, the paper derives, fairly straightforwardly, $$Im(S) = Im \int_{2M}^{2(M-\omega)}{dr \int_{0}^{\omega}d\omega' {\frac{1}{1-\sqrt{\frac{2(M-\omega')}{r}}}}}$$ (eq 41). $\omega$ is the energy carried out by the tunneling particle. Now the next step is where I get stuck. The following equation (42) suggests that the r integration has been performed to get from (41)->(42). Here's what happens when I try to do it:

Presumably the contour integral being referred to is in the complexified r variable. The way the "r" appears isn't very nice, so we make a substitution $z=r^{\frac{1}{2}}$, giving $$Im \int_{2M}^{2(M-\omega)}dz{\frac{2z^2}{z-\sqrt{2(M-\omega')}}}$$. The talk of deforming the contour "in the E plane" suggests we make the energy slightly imaginary - add $i\delta$ to $\omega$ where $\delta$ is small. The expression $\sqrt{2(M-\omega+i\delta)}$ can then be expanded in powers of delta, leaving $\sqrt{2(M-\omega)}+i\delta$ (after the expansion I've redefined delta to take out the constant factors - this doesn't matter because we're going to contour-integrate round the pole anyway, so moving the pole up and down a bit makes no difference). So the z-plane looks like the first diagram here, where the large X is the displaced pole. We ultimately want to evaluate the integral between the two points on the real axis.

enter image description here

Well, the one thing I can do is integrate round the green contour shown in the second figure. The answer is just $2\pi i$ times the residue at the simple pole, i.e. in this case $$2\pi i\cdot\lim_{z \to {\sqrt{2(M-\omega')}+i\delta}}(z-\sqrt{2(M-\omega')}+i\delta)\cdot \frac{2z^2}{(z-\sqrt{2(M-\omega')}+i\delta} $$, $$=2\pi i\cdot2\cdot(\sqrt{2(M-\omega')}+i\delta)^2$$ $$=8\pi i \cdot(M-\omega')$$ approx.

This looks similar to what I want, namely $4\pi i \cdot(M-\omega')$ in order to get equation (42) (apart from a factor of 2). However

(1) The next step would be to relate the closed contour integral to the integral along the real axis. Unfortunately, this relies on the integrand vanishing for large $|z|$ in the positive half plane, but this appears not to be the case here

(2) And anyway we want the integral between $\sqrt{2(M-\omega)}$ and $\sqrt{2M}$, so how would I deal with the integral along other parts on the real axis (i.e. outside of the classically forbidden region)?

Any hints would be welcome (or an alternative way of computing the tunneling transmission coefficient).

This post imported from StackExchange Physics at 2014-03-22 17:31 (UCT), posted by SE-user twistor59
asked Nov 25, 2012 in Theoretical Physics by twistor59 (2,500 points) [ no revision ]

1 Answer

+ 2 like - 0 dislike

The (finite) imaginary part comes solely from the singularity at $r = 2(M-\omega^\prime)$ in the integration over $r$ away from this singularity the integral is finite and real.

Performing a change of variables: $r = 2(M-\omega^\prime) + u$, since only the singularity contributes to the imaginary part , we can approximate the integrand by by his singular part in the vicinity of u = 0 :

$\frac{1}{1-\sqrt{\frac{2(M-\omega^\prime) }{r}}} \approx - 4(M-\omega^\prime) \frac{1}{u}$

Thus, the integral over $r$:

$I= 4(M-\omega^\prime) \mathrm{Im}\int_{-2\omega^\prime}^{(\omega-\omega^\prime)} \frac{du}{u}$.

Using the relation

$\frac{1}{u} = P.V.(\frac{1}{u} ) + \pi i \delta(u)$.

(P.V. denotes the Cauchy principal value. We get:

$I= 4(M-\omega^\prime) $

This post imported from StackExchange Physics at 2014-03-22 17:31 (UCT), posted by SE-user David Bar Moshe
answered Nov 27, 2012 by David Bar Moshe (4,355 points) [ no revision ]
Thank you so much. That was really helpful - I was going in completely the wrong direction!

This post imported from StackExchange Physics at 2014-03-22 17:31 (UCT), posted by SE-user twistor59

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar\varnothing$sicsOverflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...