Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,082 questions , 2,232 unanswered
5,353 answers , 22,789 comments
1,470 users with positive rep
820 active unimported users
More ...

  The divergence in QCD Series-- How many are they, and what do they mean?

+ 7 like - 0 dislike
5985 views

I am referring to this question, and especially this answer.

In addition, QCD has - like all field theories - only an asymptotic perturbation series, which means that the series itself will also diverge if all terms are summed.

What does it mean? From what I know, if the sum over a series diverge, that means that the summation doesn't work, which means that the quantity you are trying to calculate, you can't get answer for that, for any quantity that comes back from your calculation must be of finite value.

But in QCD and QED things seem a lot more complicated, since some divergences are allowed:

This doesn't mean that QCD perturbation theory doesn't have ultraviolet divergences, it has those like any other unitary interacting field theory in 4d. These ultraviolet divergences though are not a sign of a problem with the theory, since the lattice definition works fine. This is in contrast to, say, QED, where the short lattice spacing limit requires the bare coupling to blow up, and it is likely that the theory blows up to infinite coupling at some small but finite distance. This is certainly what happens in the simplest interacting field theory, the quartically self-interacting scalar

My questions:

  1. How many kinds of divergence there are in QCD and QED?
  2. And how do we know what kind of divergence is acceptable ( in the sense that we can still extract values out for prediction after some renormalization process)?
  3. If the sum diverge, then we won't be able to calculate the series's sum. Isn't that is defeating the purpose of the series? For any series, if the sum diverge after summing all the terms, then we know that the formula must be wrong or the series have no physical meaning. But why is it that for QCD series, the formula is still correct ( because it is used to extract coupling constants) and has physical meaning ( QCD series must correspond to something in reality)?
  4. The fact that QCD has non-convergent series means that it cannot be the fundamental theory of nature, right?
This post imported from StackExchange Physics at 2014-03-31 22:28 (UCT), posted by SE-user Graviton
asked Jul 9, 2013 in Theoretical Physics by Graviton (85 points) [ no revision ]
retagged Mar 31, 2014
Hi Graviton, it strikes me quite odd that all of your recent questions end with "some theory can not be a fundamental theory of naure, right?". This gives the impression that you dont want "some theory" to be a fundamental theory of nature and gives the questions a negatively opinionated touch ...

This post imported from StackExchange Physics at 2014-03-31 22:28 (UCT), posted by SE-user Dilaton
@Dilaton, what is so odd about me asking? And furthermore, even if it was odd, the question that whether if "X has divergent series rules out X as the fundamental theory of nature" is important, and an interesting one, right?

This post imported from StackExchange Physics at 2014-03-31 22:28 (UCT), posted by SE-user Graviton
Yes, the physics issues themself are interesting and I like the very nice answers that are coming in ...

This post imported from StackExchange Physics at 2014-03-31 22:28 (UCT), posted by SE-user Dilaton
Regarding question 4: It's only a problem if the theory is defined by its perturbation series. QCD is not defined by its perturbation series. The failure of the perturbation series to converge just means that it's not a very good approximation.

This post imported from StackExchange Physics at 2014-03-31 22:28 (UCT), posted by SE-user user1504

1 Answer

+ 8 like - 0 dislike

In QED there are 4 kinds of divergences:

  1. Ultraviolet divergences. Naive calculations depend on the cut-off in such a way that they go to infinity as the cut-off do. However, QED is a perturbatively renormalizable theory so that non-naive, well-done computations (see regularization and renormalization) give sensible results.

  2. Landau pole. The coupling constant $\alpha={e^2\over \hbar \, c}$, which is the expansion parameter in the perturbative series, grows with energy and goes to infinity for a finite value of the energy. It turns out that this finite value of energy is larger than the electroweak scale, where QED merges with the weak interaction and QED is not a good theory of nature anymore. Therefore, it isn't a real (phenomenological) problem.

  3. Infrared divergences. These are due to the fact that photons are massless. They however cancel out once one takes into account all the effects that contribute to a measurable observable.

  4. Non-convergent series. The $n$-th term of the perturbative expansion is of the form $\left({\alpha\over 2\pi}\right)^{n}\, (2n-1)!!$, so that the series is not convergent but asymptotic because the factor $(2n-1)!!$ grows very fast for large values of $n$. This means that we cannot give a non-perturbative definition of QFT by summing up all the terms of the series. However, the first terms are meaningful and actually give predictions that accurately agree with observations. The 'first terms' are approximately $n\sim {\pi\over \alpha}\sim 430$. And for this value of $n$, $\left({\alpha\over 2\pi}\right)^{n}\, (2n-1)!!\sim 10^{-187}$. Therefore, as long as we are not interested in a precision of one part in $10^{187}$ , this is not a real problem either. Note that QED is the theory of nature that has been confirmed with greatest precision — one part in $10^{9}$ in electron's anomalous magnetic dipole, for which $n=4$.

For QCD points 1, 3, and 4 are more o less the same. However, point 2 doesn't apply since in QCD the coupling constant $\alpha_s$ gets lower with the increasing of energy, and in fact it goes to zero as energy goes to infinity. See asymptotic freedom.

To summarize, infrared divergences are due to not taking into account effects that contribute to the observable magnitude. The asymptotic nature of QFT perturbative expansions prevents a non-perturvative (exact) definition of the theory (through its series), but doesn't entail a practical problem when comparing predictions with measurements. The lack of perturbative divergences and Landau-like poles are a necessary condition for a theory to be well-defined at arbitrarily high energies. However, theories that contain these divergences (ultraviolet or Landau-like poles) can still be very useful at energies above some scale. On the other hand, theories without these divergencies (ultraviolet or Landau-like poles), such as QCD, don't have to be valid to all energies as theories of nature.

As M. Brown points out in the comments, there is a relation between instantons and renormalons and the asymptotic nature of series. Please, see these notes snd the questions Instantons and Non Perturbative Amplitudes in Gravity and Asymptoticity of Pertubative Expansion of QFT

Reply to Graviton's comment: In my opinion, a fundamental theory of nature (whatever it means) should have a non-perturbative definition. If the perturbative expansion is not convergent, it cannot provide this non-perturbative definition. However, in principle, this doesn't necessarily mean that theory cannot have a non-perturbative definition or an exact solution, but this must be given by other means.

This post imported from StackExchange Physics at 2014-03-31 22:28 (UCT), posted by SE-user drake
answered Jul 9, 2013 by drake (885 points) [ no revision ]
+1 good answer. Regarding point 4: there's a lot that could be said here about instantons and renormalons (by somebody more knowledgeable than me!). My very vague understanding is that there are some deep connections between the (exponentially small) ambiguity of the asymptotic series and the (also exponentially small) instanton contributions, but how it all works and how general it is is still fuzzy to me.

This post imported from StackExchange Physics at 2014-03-31 22:28 (UCT), posted by SE-user Michael Brown
If I understand it correctly, the fact that QCD has non-convergent series means that it cannot be the fundamental theory of nature, right?

This post imported from StackExchange Physics at 2014-03-31 22:28 (UCT), posted by SE-user Graviton
@Graviton: In my opinion, a fundamental theory of nature (whatever it means) should have a non-perturbative definition. If the perturbative expansion is not convergent, it cannot provide this non-perturbative definition. However, in principle, this doesn't necessarily mean that theory cannot have a non-perturbative definition or an exact solution, but this must be given by other means.

This post imported from StackExchange Physics at 2014-03-31 22:28 (UCT), posted by SE-user drake
@MichaelBrown Thank you for point that out. I added some links to my answer.

This post imported from StackExchange Physics at 2014-03-31 22:28 (UCT), posted by SE-user drake
@drake: this is a good answer, but it could be improved by a discussion of renormalons.

This post imported from StackExchange Physics at 2014-03-31 22:28 (UCT), posted by SE-user Vibert
@drake Thanks! Link chasing turned up this relevant set of notes (pdf).

This post imported from StackExchange Physics at 2014-03-31 22:28 (UCT), posted by SE-user Michael Brown
Isn't the QCD Lagrangian $$L = \bar \psi_a i D^\mu \gamma_\mu \psi_a + m_a \bar \psi_a \psi_a$$ a non-perturbative statement of the theory? The perturbation series only enters as soon as one expands $\exp\{i \int d^4 x \mathcal L_\mathrm{int}\}$ in the calculation of cross-sections- lattice QCD is a non-perturbative treatment e.g.

This post imported from StackExchange Physics at 2014-03-31 22:28 (UCT), posted by SE-user Neuneck
@Neuneck: It might be better to say that 'QCD is a continuum limit of lattice QCD' is a non-perturbative definition. Just writing the Lagrangian down obscures the additional choices you have to make when defining the lattice path integral.

This post imported from StackExchange Physics at 2014-03-31 22:28 (UCT), posted by SE-user user1504
@drake, thanks for your comment. Would you like to integrate the explanation about perturbation expansion nature with regards to fundamental theory of nature into your answer? Since this is also a part of my question now

This post imported from StackExchange Physics at 2014-03-31 22:28 (UCT), posted by SE-user Graviton
@Vibert Thanks! Right now, I wouldn't be able to write a clear summary about renormalons. It would be nice that you write it (perhaps as a follow-up of my answer).

This post imported from StackExchange Physics at 2014-03-31 22:28 (UCT), posted by SE-user drake
@Neuneck QCD is a theory in Minkowski (continuum and Lorentzian rather than Euclidean)

This post imported from StackExchange Physics at 2014-03-31 22:28 (UCT), posted by SE-user drake
To amplify drake's answer to Graviton's question from the opposite angle: an asymptotic series can well be the perturbative expansion of a non-pertrubatively defined fundamental theory of nature. Having the asymptotic perturbation series is not yet having the "fundamental theory", but it can be a step in that direction.

This post imported from StackExchange Physics at 2014-03-31 22:28 (UCT), posted by SE-user Urs Schreiber
@UrsSchreiber Good point! $\phi^4$ in two dimensions is an example, right?

This post imported from StackExchange Physics at 2014-03-31 22:28 (UCT), posted by SE-user drake

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ysicsOve$\varnothing$flow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...