Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,082 questions , 2,232 unanswered
5,353 answers , 22,789 comments
1,470 users with positive rep
820 active unimported users
More ...

  Proof of equivalence of different representations of the $\gamma$-matrices in the Dirac equation

+ 3 like - 0 dislike
2893 views

This question concerns the Dirac equation and the $4\times4$ $\gamma$-matrices. The task is to prove that a similarity transformation of the standard $\gamma$-matrix conserves the commutation relation

$$ \{\gamma^\mu,\gamma^\nu\} ~=~ 2g^{\mu\nu}, $$

where $2g^{\mu\nu}$ is the metric tensor $\text{diag}(1,-1,-1,-1)$, and the similarity transformation is defined as

$$ \tilde{\gamma}^\mu = S \gamma^\mu S^\dagger, $$

and $S$ is a unitary matrix. I will write down the start of my proof to show where I stop. First of all, we can use that $S$ is unitary and show that $\gamma^\mu = S^\dagger\tilde{\gamma}^\mu S$, and insert this into the commutator. This leaves us, again using that $SS^\dagger = I$, with

$$ S^\dagger\{\tilde{\gamma}^\mu,\tilde{\gamma}^\nu\}S = 2g^{\mu\nu} $$

which again gives us

$$ \{\tilde{\gamma}^\mu,\tilde{\gamma}^\nu\} = 2Sg^{\mu\nu}S^\dagger. $$

In order for the proof to hold, it requires that $g^{\mu\nu}$ and $S$ commute so that

$$ 2Sg^{\mu\nu}S^\dagger = 2g^{\mu\nu}SS^\dagger = 2g^{\mu\nu}. $$

So my question is: Do all unitary matrices commute with the metric tensor $g^{\mu\nu}$? If yes, how can I show this easily?

This post imported from StackExchange Physics at 2014-05-04 11:17 (UCT), posted by SE-user camzor00
asked May 2, 2014 in Theoretical Physics by camzor00 (15 points) [ no revision ]
retagged May 4, 2014
Hint to the question (v2): The commutation relation has an (implicit) identity matrix on the rhs: $\{\gamma^\mu,\gamma^\nu\} ~=~ 2g^{\mu\nu}~{\bf1}_{4\times 4}$.

This post imported from StackExchange Physics at 2014-05-04 11:17 (UCT), posted by SE-user Qmechanic
I don't see it, even with the hint..

This post imported from StackExchange Physics at 2014-05-04 11:17 (UCT), posted by SE-user camzor00
If you fix $\mu$ and $\nu$ $g^{\mu\nu}$ is a number, so it commutes with every matrix.

This post imported from StackExchange Physics at 2014-05-04 11:17 (UCT), posted by SE-user V. Moretti

Your argument holds for any fixed pair of indices, hence $g^{\mu\nu}$ is just a number, which can be taken out of your expression to complete the proof. 

1 Answer

+ 0 like - 1 dislike

Dirac $\gamma$ matrices are 4x4 matrices, they differ from each other by index $\mu$. And there is a 4x4 unity matrix amongst all 4x4 matrices, usually denoted by $I$. It stays (often implicitly for simplicity) at  $g^{\mu\nu}$. (A product of two 4x4 matrices is also a 4x4 matrix; a sum of 4x4 matrices is also a 4x4 matrix. So no wonder that the anticommutator is some 4x4 matrix too. If you anticommute, say, $\gamma^3$ with itself, you will obtain $2I$ since $g^{33}=1$.)

If some set of 4x4 marices $\gamma'$ may be obtained from an "original representation" of $\gamma$ with a unitary transformation, then it is as good as the original set of $\gamma$, because it obeys the same Dirac algebra and leads to the Klein-Gordon equation, as usual.

In practice there are more or less convenient particular $\gamma$ matrix choices, but it is subjective and related to the volume of calculations for a human being.

answered Oct 26, 2016 by Vladimir Kalitvianski (102 points) [ revision history ]
edited Oct 26, 2016 by Vladimir Kalitvianski

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ysicsOver$\varnothing$low
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...