Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

206 submissions , 164 unreviewed
5,103 questions , 2,249 unanswered
5,355 answers , 22,801 comments
1,470 users with positive rep
820 active unimported users
More ...

  $\mathcal N=2$ Weyl multiplet and chiral superfields

+ 5 like - 0 dislike
1297 views

It is more or less known that a given antisymmetric tensor $F$ in two indices can be written in terms of spinorial indices, splitting into self-dual and anti-self-dual parts
$$ F_{\mu\nu} =
F_{\alpha\beta}
(\sigma_\mu)^{\alpha\dot\alpha}(\sigma_\nu)^{\beta\dot\beta}
\varepsilon_{\dot\alpha\dot\beta} +
F_{\dot\alpha\dot\beta}
(\sigma_\mu)^{\alpha\dot\alpha}(\sigma_\nu)^{\beta\dot\beta}
\varepsilon_{\alpha\beta} .$$

My question is the following: start from equations 5.3 and 5.4 of [1]
$$ W_{\mu\nu}^{ij} = T_{\mu\nu}^{ij} -
R_{\mu\nu\lambda\rho}\theta^i\sigma_{\lambda\rho}\theta^j + \cdots $$
which is self-dual in Lorentz indices $\mu\nu$ and antisymmetric in $\mathrm{SU}(2)$ indices $ij$.
Then it is squared to
$$W^2= \varepsilon_{ij}\varepsilon_{kl} W_{\mu\nu}^{ij}W_{\mu\nu}^{kl}.$$
How do I see (possibly using the first equation above) that this is the same as starting from a tensor (see formula 4.1 and below of [2]) $W_{\alpha\beta}$ with self-dual $T$ as top component, where $\alpha$, $\beta$ denote symmetric spinor indices and
$$W^2=W_{\alpha\beta}W_{\alpha'\beta'}
\varepsilon^{\alpha\alpha'}\varepsilon^{\beta\beta'} ?$$


  [1]: http://arxiv.org/abs/hep-th/9307158
  [2]: http://arxiv.org/abs/hep-th/9912123

asked May 19, 2014 in Theoretical Physics by jj_p (150 points) [ revision history ]

1 Answer

+ 3 like - 0 dislike

I guess that in $W_{\alpha \beta}$ the indices $i$ and $j$ are here but not written and are contracted in $W^2$ in the same way that in the first $W^{2}$. So I can forget these indices in what follows.

I will show that the two $W^{2}$ are the same if we have the relation  

$W_{\mu\nu} =\frac{1}{2}W_{\alpha\beta}(\sigma_\mu)^{\alpha\dot\alpha}(\sigma_\nu)^{\beta\dot\beta}\varepsilon_{\dot\alpha\dot\beta}$

which is the same thing suggested by the first equation of the question up to the factor 1/2. I don't know if this factor is relevant. Given this relation, we have

$W_{\mu\nu}W^{\mu\nu} = \frac{1}{4}W_{\alpha\beta}W_{\alpha'\beta'}(\sigma_\mu)^{\alpha\dot\alpha}(\sigma^\mu)^{\alpha'\dot\alpha'} (\sigma_\nu)^{\beta\dot\beta} (\sigma^\nu)^{\beta'\dot\beta'} \varepsilon_{\dot\alpha\dot\beta}\varepsilon_{\dot\alpha'\dot\beta'}$.

Now the key point is the identity (*)  $(\sigma_\mu)^{\alpha\dot\alpha}(\sigma^\mu)^{\alpha'\dot\alpha'} = 2 \varepsilon^{\alpha \alpha'}\varepsilon_{\dot\alpha \dot\alpha'}$. Using (*) and the analoguous relation with the $\alpha$'s replaced by the $\beta$'s, and simplifying the $\epsilon$'s (we have $\varepsilon^{\dot\alpha\dot\alpha'}\varepsilon_{\dot\alpha\dot\beta}\varepsilon^{\dot\beta\dot\beta'}  \varepsilon_{\dot\alpha'\dot\beta'}=1$), we obtain

$W_{\mu\nu}W^{\mu\nu}= W_{\alpha\beta}W_{\alpha'\beta'} \varepsilon^{\alpha\alpha'}\varepsilon^{\beta\beta'}$.

Proof of (*): the identity (*) is a part of a large class of identities generally referred to as Fierz identities. These identities are all consequences of the fact that the four matrices $\sigma^\mu$ are a basis of the four dimensional vector space of two by two complex matrices. See for example this question:

http://www.physicsoverflow.org/17763/how-does-one-prove-fierz-identities?show=17763#q17763

Using $\sigma^0 = 1$, $Tr(\sigma^i)=0$, and $Tr(\sigma^i \sigma^j)=2 \delta^{ij}$ for $i,j=1,2,3$, we find that any two by two complex matrix $M$ can be written $M = \frac{1}{2} Tr(M) 1 + \frac{1}{2}Tr(M \sigma^i) \sigma^i$. Applying this  to $M$ being the matrix $M_{\alpha \dot\alpha}(\beta \dot\beta)=\delta_{\alpha \beta} \delta_{\dot \alpha \dot\beta}$ (the matrices $M(\beta \dot\beta)$ form a natural basis of the space of two by two complex matrice) gives

$\delta_{\alpha \beta} \delta_{\dot\alpha \dot\beta}= \frac{1}{2} \delta_{\beta \dot\beta} \delta_{\alpha \dot\alpha} + \frac{1}{2}(\sigma^i)_{\dot\beta \beta}(\sigma^i)_{\alpha \dot\alpha}$. Therefore,

$-(\sigma^i)_{\dot\beta \beta}(\sigma^i)_{\alpha \dot\alpha}=\delta_{\beta \dot\beta} \delta_{\alpha \dot\alpha}  -2\delta_{\alpha \beta} \delta_{\dot\alpha \dot\beta} $.

In signature (+---), we have $(\sigma^\mu)_{\alpha \dot\alpha} (\sigma^\mu)_{\dot\beta \beta}=\delta_{\beta \dot\beta} \delta_{\alpha \dot\alpha} -(\sigma^i)_{\beta \dot\beta}(\sigma^i)_{\alpha \dot\alpha}$. Combining with the previous equality gives

$(\sigma^\mu)_{\alpha \dot\alpha} (\sigma^\mu)_{ \dot\beta \beta}= 2 (\delta_{\beta \dot\beta} \delta_{\alpha \dot\alpha}-\delta_{\alpha \beta} \delta_{\dot\alpha \dot\beta})=2 \varepsilon_{\alpha \dot\beta}\varepsilon_{\dot\alpha \beta}$, hence (*).

answered May 20, 2014 by 40227 (5,140 points) [ revision history ]
edited May 20, 2014 by 40227

thanks for the answer; I'm not sure I can either upvote or choose it as the preferred answer, basing on my current reputation, but that's what I was asking for

Hi @jj_p welcome to PhysicsOverflow :-)

for voting on answers you need 50 rep, and the SE feature of accepting answers is disabled as many people considered it to be not too useful  for high-level physics discussions.

BTW if there are SE questions (your own would be highly welcome here too) you would like to see on PhysicsOverflow, you can suggest them to be imported here

Thanks for the welcome and info @Dilaton

I'll check whether there's something worth being imported among my questions :)

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ysicsOverflo$\varnothing$
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...