Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,082 questions , 2,232 unanswered
5,353 answers , 22,789 comments
1,470 users with positive rep
820 active unimported users
More ...

  Any use for $F_4$ in hep-th?

+ 18 like - 0 dislike
1156 views

In high energy physics, the use of the classical Lie groups are common place, and in the Grand Unification the use of $E_{6,7,8}$ is also common place.

In string theory $G_2$ is sometimes utilized, e.g. the $G_2$-holonomy manifolds are used to get 4d $\mathcal{N}=1$ susy from M-theory.

That leaves $F_4$ from the list of simple Lie groups. Is there any place $F_4$ is used in any essential way?

Of course there are papers where the dynamics of $d=4$ $\mathcal{N}=1$ susy gauge theory with $F_4$ are studied, as part of the study of all possible gauge groups, but I'm not asking those.

This post has been migrated from (A51.SE)
asked Oct 7, 2011 in Theoretical Physics by Yuji (1,395 points) [ no revision ]
retagged Apr 19, 2014 by dimension10
If you search for `F(4)` in INSPIRE, you will see a number of papers. There is an old paper by Larry Romans with the construction of an $F_4$ gauged six-dimensional supergravity which was popular in its day. Also I seem to recall a paper with an $F_4$ string theory, probably prompted by the fact that the dimension of the fundamental representation of $F_4$ is 26.

This post has been migrated from (A51.SE)
Wasn't Romans' F(4) the super algebra F(4)?

This post has been migrated from (A51.SE)
Hmm, you're probably right. The stringy $F_4$ was the exceptional Lie algebra, though. I can't seem to locate the paper, though.

This post has been migrated from (A51.SE)

1 Answer

+ 13 like - 0 dislike

$F_4$ is the centralizer of $G_2$ inside an $E_8$. In other words, $E_8$ contains an $F_4\times G_2$ maximal subgroup. That's why by embedding the spin connection into the $E_8\times E_8$ heterotic gauge connection on $G_2$ holonomy manifolds, one obtains an $F_4$ gauge symmetry. See, for example,

http://arxiv.org/abs/hep-th/0108219

Gauge theories and string theory with $F_4$ gauge groups, e.g. in this paper

http://arxiv.org/abs/hep-th/9902186

depend on the fact that $F_4$ may be obtained from $E_6$ by a projection related to the nontrivial ${\mathbb Z}_2$ automorphism of $E_6$ which you may see as the left-right symmetry of the $E_6$ Dynkin diagram. This automorphism may be realized as a nontrivial monodromy which may break the initial $E_6$ gauge group to an $F_4$ as in

http://arxiv.org/abs/hep-th/9611119

Because of similar constructions, gauge groups including $F_4$ factors (sometimes many of them) are common in F-theory:

http://arxiv.org/abs/hep-th/9701129

More speculatively (and outside established string theory), a decade ago, Pierre Ramond had a dream

http://arxiv.org/abs/hep-th/0112261
http://arxiv.org/abs/hep-th/0301050

that the 16-dimensional Cayley plane, the $F_4/SO(9)$ coset (note that $F_4$ may be built from $SO(9)$ by adding a 16-spinor of generators), may be used to define all of M-theory. As far as I can say, it hasn't quite worked but it is interesting. Sati and others recently conjectured that M-theory may be formulated as having a secret $F_4/SO(9)$ fiber at each point:

http://motls.blogspot.com/2009/10/is-m-theory-hiding-cayley-plane-fibers.html

Less speculatively, the noncompact version $F_{4(4)}$ of the $F_4$ exceptional group is also the isometry of a quaternion manifold relevant for the maximal $N=2$ matter-Einstein supergravity, see

http://arxiv.org/abs/hep-th/9708025

In that paper, you may also find cosets of the $E_6/F_4$ type and some role is also being played by the fact that $F_4$ is the symmetry group of a $3\times 3$ matrix Jordan algebra of octonions.

A very slight extension of this answer is here:

http://motls.blogspot.com/2011/10/any-use-for-f4-in-hep-th.html

This post has been migrated from (A51.SE)
answered Oct 7, 2011 by Luboš Motl (10,278 points) [ no revision ]

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ysicsO$\varnothing$erflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...