There are two possibilities: Either (1) you have seen a rare 3-sigma event, or (2) you have underestimated the uncertainties in your experiment. Making an accidental systematic change between the two measurements would count as an example of (2), i.e. a source of uncertainty that you didn't take into account.
Experience suggests that (2) is by far the likelier possibility.
Ideally you would figure out how and why you underestimated the uncertainty -- what aspect wasn't controlled properly or whatever. But if it's not terribly important and you're in a hurry and you can't do a third and fourth experiment, you can just say there is an additional source of uncertainty $\sigma_{other}$ which accounts for the "unknown unknowns".
Now your two measurements are:
\(a \pm \sigma_a \pm \sigma_{other}\)
\(b \pm \sigma_b \pm \sigma_{other}\)
You can guess \(\sigma_{other}\) by setting it to a value that makes the two measurements 1 sigma apart or so (a reasonably probable value). After you do that, you can say that your best guess for the real answer is something like \((a+b)/2 \pm (\sigma_{other}/\sqrt{2})\) (since I gather that \(\sigma_{other}\) is the dominant source of uncertainty). But you can't treat that expression too literally, it's just a very rough guess.