Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,082 questions , 2,232 unanswered
5,353 answers , 22,789 comments
1,470 users with positive rep
820 active unimported users
More ...

  How exactly to show that s-matrix elements diverges because time-ordering is not well determined?

+ 2 like - 0 dislike
1370 views

Let's have s-matrix: $$ S_{\alpha \beta} = \langle \alpha | \hat {S} | \beta \rangle , $$ $$\hat{S} = \hat{T}e^{-i\int \hat{L}(x)d^{4}x}, \quad \hat{T} \left( \hat{\Psi}(t) \hat{\Psi}(t') \right) = \theta (t - t')\hat{\Psi}(t)\hat{\Psi}(t') \pm \theta (t' - t)\hat{\Psi}(t')\hat{\Psi}(t). $$ How to show that matrix elements diverges because time ordering is not well-defined operation when $t=t'$?

This post imported from StackExchange Physics at 2014-06-27 11:27 (UCT), posted by SE-user Andrew McAddams
asked Jun 25, 2014 in Theoretical Physics by Andrew McAddams (340 points) [ no revision ]
I have not time enough to properly answer. However the $T$ product is ill-defined when you consider Wick products, as they involve products of Feynman propagators (i.e. loops). These products are not well defined and the convolutions of them arising in computing the terms in the $S$-matrix expansion are consequently ill-defined. The problem shows up when arguments coincide ($x=x'$). Renormalization is a procedure to adjust these distributions, defining the $T$ product, before computing the convolutions. This procedure is ambiguous, giving rise to the well known renormalization counterterms.

This post imported from StackExchange Physics at 2014-06-27 11:27 (UCT), posted by SE-user V. Moretti
Thank you, but I want to make another one detail clear. I But why do we think that ill definition of $T$ product leads to infinities? It may be the problem of theory which arises independently of ill definition of $T$ product, and by redefinition $T$-product we were lucky (!) to get rid of this problem.

This post imported from StackExchange Physics at 2014-06-27 11:27 (UCT), posted by SE-user Andrew McAddams
Infinities are not the problem just a symptom if one decide to follow a way. The properties of the T product do not completely fix it in view of the fact that the interactions are supposed to be described by Wick polynomials. So the T products must be fixed and ambiguities remain. These ambiguities are the finite renormalization counterterms. This approach is the so-called Epstein-Glaser's one. No infinities arise this way and it encompasses all possible definitions of T product. The procedure extends to QFT in curved spacetime.

This post imported from StackExchange Physics at 2014-06-27 11:27 (UCT), posted by SE-user V. Moretti

1 Answer

+ 1 like - 0 dislike

Mathematically one way to see it is that the (combined) step functions become Dirac pulses i.e $\theta(t) \to \delta(t)$, which diverge. When $t \to t'$, the fields have nearly identical values, thus the time-ordered product involving step functions degenerates into dirac pulse (a dirac pulse is the derivative of the step function)

Physically another way to see this is: S-matrix describes interactions between states and particles, as such a matrix element for $t \to t'$, requires an interaction to take place instanteneously, thus it would require infinite energy at that point (also related to time-energy unceratinty).

This post imported from StackExchange Physics at 2014-06-27 11:27 (UCT), posted by SE-user Nikos M.
answered Jun 26, 2014 by Nikos M. (80 points) [ no revision ]

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ysicsOver$\varnothing$low
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...