They come from different places. First, the X−d0 comes from the delta functions δd(Jμ0).
Jμ0=∫Md2σX0(n∑i=1kμiδ2(σ−σi))=X0n∑i=1kμi
Then, the deltas will be given by
δd(X0∑ni=1kμi)=X−d0δd(∑ni=1kμi). This is how the
X−d0 shows up.
Now, the renormalized Green's functions
G´r(σi,σi) comes from the definition of the operator
[eikX(σ1)]r=exp(12∫d2σ2d2σ′Δ(σ,σ′)δδXμ(σ)δδXμ(σ′))eikX(σ1)=
=exp(12Δ(σ1,σ1)k21)eikX(σ1)
Then, for the self contraction terms, the
G(σi,σi) will be accompanied by the
Δ(σi,σi), killing the divergence. The resultant will be the
G´r(σi,σi)=G(σi,σi)+Δ(σi,σi), the renormalized Green's function.