I am trying to obtain the polchinski's equation 4.3.16
which is following
$ Q_B^2 = \frac{1}{2}\{ Q_B, Q_B \} = -\frac{1}{2}g^{K}_{IJ}g^{M}_{KL}c^Ic^Jc^L b_M =0$
Where
$ Q_B = C^I(G_I^m +\frac{1}{2}G_I^g)$
and $C^I$, $b^J$ are anticommuting(ghosts)
and
$[G_I, G_J]=ig^K_{IJ} G_K$,
$G_I^g = -ig^K_{IJ} C^Jb_K $ are ghost parts and $G_I^m$ are matter part and they satisfy above commutation relations
What I have done are
$\{ Q_B, Q_B \} = \{ C^I(G_I^m +\frac{1}{2}G_I^g), C^J(G_J^m +\frac{1}{2}G_J^g)\}
=\{C^IG_I^m, C^J G_J^m\} +\frac{1}{2} \{C^IG_I^m, C^JG_J^g\}
+\frac{1}{2} \{C^I G_I^g, C^JG_J^m\} +\frac{1}{4} \{C^IG_I^g, C^JG_J^g \}
= C^IC^J [G_I^m, G_J^m ] +\frac{1}{2} C^IC^J [G_I^m, G_J^g] +\frac{1}{2}C^IC^J[G_I^g,G_J^m]+\frac{1}{4}C^IC^J[G_I^g, G_J^g] =C^IC^J [G_I^m, G_J^m ]+\frac{1}{4}C^IC^J[G_I^g, G_J^g] = C^IC^J ig^K_{IJ}G_K^m+\frac{1}{4}C^IC^J ig^{K}_{IJ}G_K^g
=C^IC^J ig^K_{IJ}G_K^m+\frac{1}{4}C^IC^J g_{IJ}^K g^M_{KL}C^Lb_M
$
compare with the textbook
$\{ Q_B, Q_B \} = -g^{K}_{IJ}g^{M}_{KL}c^Ic^Jc^L b_M$
My calculation is something wrong. How can I fix it?
This post imported from StackExchange Physics at 2014-08-26 10:53 (UCT), posted by SE-user phy_math