I'm trying to compute the angular momentum
$$Q_i=-2\epsilon_{ijk}\int{d^3x}\,x^kT^{0j}\tag{1}$$
where ${T^\mu}_\nu=\frac{\partial\mathcal{L}}{\partial(\partial_\mu\phi)}\partial_\nu\phi-{\delta^\mu}_\nu\mathcal{L}$ with the Lagrangian $\mathcal{L}=\frac{1}{2}\partial_\mu\phi\partial^\mu\phi-\frac{1}{2}m^2\phi^2$ on the real scalar field $\phi=\phi(x)$.
This is basically the same question and I'm following the same lectures by David Tong, but the answer doesn't seem successful to me and I'm not sure if I have some mistake or if my question is ultimately about normal ordering. As stated there, the final expression of $Q_i$ in terms of ladder operators should be
$$Q_i=-i\epsilon_{ijk}\int\frac{d^3p}{(2\pi)^3} a^\dagger_\vec{p}\left(p_j\frac{\partial}{\partial{p}^k}-p_k\frac{\partial}{\partial{p}^j}\right) a_\vec{p}\tag{2}$$
How is this correctly calculated?
Here's what I did: As $T^{0j}=\dot\phi\partial^j\phi$ and
\begin{align}\phi=\int\frac{d^3p}{(2\pi)^3}\frac{1}{\sqrt{2E_\vec{p}}}\left(a_\vec{p} e^{i\vec{p}\cdot\vec{x}}+a^\dagger_\vec{p} e^{-i\vec{p}\cdot\vec{x}}\right)\tag{3}\\
\dot\phi=-i\int\frac{d^3p}{(2\pi)^3}\sqrt{\frac{E_\vec{p}}{2}}\left(a_\vec{p} e^{i\vec{p}\cdot\vec{x}}-a^\dagger_\vec{p} e^{-i\vec{p}\cdot\vec{x}}\right)\tag{4}\\
\partial^j\phi=-i\int\frac{d^3p}{(2\pi)^3}\frac{p^j}{\sqrt{2E_\vec{p}}}\left(a_\vec{p} e^{i\vec{p}\cdot\vec{x}}-a^\dagger_\vec{p} e^{-i\vec{p}\cdot\vec{x}}\right)\tag{5}\end{align}
then
\begin{align}&Q_i=-2\epsilon_{ijk}\int{d^3x}\,x^k\dot\phi_p(x)\partial^j\phi_q(x)\\
&=\epsilon_{ijk}\sqrt{\frac{E_\vec{p}}{E_\vec{q}}}\int\frac{d^3pd^3qd^3x}{(2\pi)^6}x^kq^j\left(a_\vec{p}e^{i\vec{p}\cdot\vec{x}}-a^\dagger_\vec{p}e^{-i\vec{p}\cdot\vec{x}}\right)\left(a_\vec{q}e^{i\vec{q}\cdot\vec{x}}-a^\dagger_\vec{q}e^{-i\vec{q}\cdot\vec{x}}\right)\\
&=\cdots\left(a_\vec{p}a_\vec{q}e^{i(\vec{p}+\vec{q})\cdot\vec{x}}+a_\vec{p}^{\dagger}a_\vec{q}^{\dagger}e^{-i(\vec{p}+\vec{q})\cdot\vec{x}}-a_\vec{p}a^\dagger_\vec{q}e^{i(\vec{p}-\vec{q})\cdot\vec{x}}-a^\dagger_\vec{p}a_\vec{q}e^{-i(\vec{p}-\vec{q})\cdot\vec{x}}\right)\tag{6}\end{align}
Now,
\begin{align}\int{d^3x}\,x^ke^{i(\vec{p}\pm\vec{q})\cdot\vec{x}}=\mp{i}\frac{\partial}{\partial{p}^k}\int{d^3x}\,e^{i(\vec{p}\pm\vec{q})\cdot\vec{x}}=\mp{i}\,(2\pi)^3\frac{\partial}{\partial{p}^k}\delta(\vec{p}\pm\vec{q})\tag{7}\end{align}
and so
\begin{align}Q_i=-i\epsilon_{ijk}&\sqrt{\frac{E_\vec{p}}{E_\vec{q}}}\int\frac{d^3pd^3q}{(2\pi)^3}\\&q^j\left[(a_\vec{p}a_\vec{q}-a^\dagger_\vec{p}a^\dagger_\vec{q})\frac{\partial}{\partial{q}^k}\delta(\vec{p}+\vec{q})+(a_\vec{p}a^\dagger_\vec{q}-a^\dagger_\vec{p}a_\vec{q})\frac{\partial}{\partial{q}^k}\delta(\vec{p}-\vec{q})\right]\tag{8}\end{align}
Now, integrating by parts on $q$, for example, for the first term
\begin{align}\epsilon_{ijk}a_\vec{p}\int{d^3q}\,q^ja_\vec{q}\frac{\partial}{\partial{q}^k}\delta(\vec{p}+\vec{q})&=-\epsilon_{ijk}a_\vec{p}\int{d^3q}\,q^j\left[\frac{\partial}{\partial{q}^k}a_\vec{q}\right]\delta(\vec{p}+\vec{q})\\
&=\epsilon_{ijk}a_\vec{p}p^j\frac{\partial}{\partial(-p)^k}a_{-\vec{p}}\tag{9}\end{align}
and this is where I differ from the question I mentioned at the beginning. Integrating all terms in $q$,
\begin{align}Q_i=-i\epsilon_{ijk}&\int\frac{d^3p}{(2\pi)^3}\\&p^j\left[a_\vec{p}\frac{\partial}{\partial(-p)^k}a_{-\vec{p}}-a^\dagger_\vec{p}\frac{\partial}{\partial(-p)^k}a^\dagger_{-\vec{p}}-a_\vec{p}\frac{\partial}{\partial{p}^k}a^\dagger_\vec{p}+a^\dagger_\vec{p}\frac{\partial}{\partial{p}^k}a_\vec{p}\right]\tag{10}\end{align}
Now, I'm guessing the first two terms vanish upon integration because they are odd in $p$, leaving
\begin{align}Q_i=-i\epsilon_{ijk}\int\frac{d^3p}{(2\pi)^3}p^j\left[a^\dagger_\vec{p}\frac{\partial}{\partial{p}^k}a_\vec{p}-a_\vec{p}\frac{\partial}{\partial{p}^k}a^\dagger_\vec{p}\right]\tag{11}\end{align}
So, if this expression is correct, how is it normal ordered?
What I tried was
\begin{align}:a^\dagger_\vec{p}(\partial_ka_\vec{p})-a_\vec{p}(\partial_ka^\dagger_\vec{p}):&=a^\dagger_\vec{p}(\partial_ka_\vec{p})-:a_\vec{p}(\partial_ka^\dagger_\vec{p}):\\
&=a^\dagger_\vec{p}(\partial_ka_\vec{p})-(\partial_ka^\dagger_\vec{p})a_\vec{p}\\
&=2a^\dagger_\vec{p}(\partial_ka_\vec{p})-\partial_k(a^\dagger_\vec{p}a_\vec{p})\tag{12}\end{align}
(where of course I'm using $\partial_k=\frac{\partial}{\partial{p}^k}$) which would yield the correct answer if $\partial_k(a^\dagger_\vec{p}a_\vec{p})=0$. I also noticed that $\partial_k(a^\dagger_\vec{p}a_\vec{p})=\partial_k(a_\vec{p}a^\dagger_\vec{p})$ since $[a_\vec{p},a^\dagger_\vec{p}]=(2\pi)^3\delta(0)$. However, I'm not really sure what's going on, whether if I made a mistake before or how to do the normal ordering if eq. (11) is right.
This post imported from StackExchange Physics at 2014-10-23 07:16 (UTC), posted by SE-user Pedro Figueroa