I'm trying to compute the angular momentum
Qi=−2ϵijk∫d3xxkT0j
where
Tμν=∂L∂(∂μϕ)∂νϕ−δμνL with the Lagrangian
L=12∂μϕ∂μϕ−12m2ϕ2 on the real scalar field
ϕ=ϕ(x).
This is basically the same question and I'm following the same lectures by David Tong, but the answer doesn't seem successful to me and I'm not sure if I have some mistake or if my question is ultimately about normal ordering. As stated there, the final expression of Qi in terms of ladder operators should be
Qi=−iϵijk∫d3p(2π)3a†→p(pj∂∂pk−pk∂∂pj)a→p
How is this correctly calculated?
Here's what I did: As T0j=˙ϕ∂jϕ and
ϕ=∫d3p(2π)31√2E→p(a→pei→p⋅→x+a†→pe−i→p⋅→x)˙ϕ=−i∫d3p(2π)3√E→p2(a→pei→p⋅→x−a†→pe−i→p⋅→x)∂jϕ=−i∫d3p(2π)3pj√2E→p(a→pei→p⋅→x−a†→pe−i→p⋅→x)
then
Qi=−2ϵijk∫d3xxk˙ϕp(x)∂jϕq(x)=ϵijk√E→pE→q∫d3pd3qd3x(2π)6xkqj(a→pei→p⋅→x−a†→pe−i→p⋅→x)(a→qei→q⋅→x−a†→qe−i→q⋅→x)=⋯(a→pa→qei(→p+→q)⋅→x+a†→pa†→qe−i(→p+→q)⋅→x−a→pa†→qei(→p−→q)⋅→x−a†→pa→qe−i(→p−→q)⋅→x)
Now,
∫d3xxkei(→p±→q)⋅→x=∓i∂∂pk∫d3xei(→p±→q)⋅→x=∓i(2π)3∂∂pkδ(→p±→q)
and so
Qi=−iϵijk√E→pE→q∫d3pd3q(2π)3qj[(a→pa→q−a†→pa†→q)∂∂qkδ(→p+→q)+(a→pa†→q−a†→pa→q)∂∂qkδ(→p−→q)]
Now, integrating by parts on
q, for example, for the first term
ϵijka→p∫d3qqja→q∂∂qkδ(→p+→q)=−ϵijka→p∫d3qqj[∂∂qka→q]δ(→p+→q)=ϵijka→ppj∂∂(−p)ka−→p
and this is where I differ from the question I mentioned at the beginning. Integrating all terms in
q,
Qi=−iϵijk∫d3p(2π)3pj[a→p∂∂(−p)ka−→p−a†→p∂∂(−p)ka†−→p−a→p∂∂pka†→p+a†→p∂∂pka→p]
Now, I'm guessing the first two terms vanish upon integration because they are odd in
p, leaving
Qi=−iϵijk∫d3p(2π)3pj[a†→p∂∂pka→p−a→p∂∂pka†→p]
So, if this expression is correct, how is it normal ordered?
What I tried was
:a†→p(∂ka→p)−a→p(∂ka†→p):=a†→p(∂ka→p)−:a→p(∂ka†→p):=a†→p(∂ka→p)−(∂ka†→p)a→p=2a†→p(∂ka→p)−∂k(a†→pa→p)
(where of course I'm using
∂k=∂∂pk) which would yield the correct answer if
∂k(a†→pa→p)=0. I also noticed that
∂k(a†→pa→p)=∂k(a→pa†→p) since
[a→p,a†→p]=(2π)3δ(0). However, I'm not really sure what's going on, whether if I made a mistake before or how to do the normal ordering if eq. (11) is right.
This post imported from StackExchange Physics at 2014-10-23 07:16 (UTC), posted by SE-user Pedro Figueroa