Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,082 questions , 2,232 unanswered
5,353 answers , 22,789 comments
1,470 users with positive rep
820 active unimported users
More ...

  Looking for intro to Conformal Bootstrap

+ 4 like - 0 dislike
1719 views

I want to start looking at the conformal bootstrap. I've heard very interesting things about it but would like to clear some things up first.

I taken QFT at the level of Peskin & Schroeder, written a bachelors thesis on quantum integrability, know complex analysis up to things like mobius transformations and conformal mappings, functional analysis and algebraic topology. Then stuff like EM with Jackson and QM with Merzbacher's books etc.

What resources are best for working up to the conformal bootstrap?

From what I've seen the bootstrap seems to be heavily numerical. I'm extremely used to exact analytical expressions so would like to know the use of the bootstrap, particularly in relation to N=4 SYM (recently looked through a paper on this topic but it was above my level) or even general QFT.

This post imported from StackExchange Physics at 2015-03-27 18:49 (UTC), posted by SE-user ryanp16
asked Mar 24, 2015 in Resources and References by ryanp16 (90 points) [ no revision ]
retagged Mar 27, 2015

3 Answers

+ 3 like - 0 dislike

The conformal bootstrap is a program for understanding conformal field theories in $d$ dimensions in terms of their $n$-point functions for (very) small $n$.

The case $d=2$ is rather special as the representation theory of the Virasoro group and the assumption of a central charge in the discrete series drastically restricts the possibilities and allows one to explicitly construct almost everything of interest. Because of the large symmetry group, everything can be done analytically. There are many books and lecture notes on CFT treating this in some detail; in the following, I do not consider this further.

In dimensions $d=3$ (relevant for statistical physics) and $d=4$ (relevant for relativistic quantum field theory), the conformal bootstrap remained dormant for many years since it was not clear what could replace the assumption of a central charge in the discrete series. Some important older papers are by Mack & Todorov, by Osborn & Petkou,  by Nikolov, Stanev & Todorov; see also Fradkin & Palchik.

Recently, the conformal bootstrap lead to a flurry of new activity due to the discovery that at least the $d=3$ Ising CFT can be characterized as an extremal CFT according to several criteria. The assumption of extremality allows one to construct truncated optimization problems whose numerical solution gives values of unprecedented accuracy for the critical exponents of the Ising model. The central new idea was presented in a paper by El-Showk, Paulos, Poland, Rychkov, Simmons-Duffin & Vichi. In my review of this paper, the theory underlying the principle is explained.  (Almost everything else is just about computational techniques to create and numerically solve the associated optimization problems.) A recent quora discussion contains a long list of recent papers exploiting this idea.

answered Mar 30, 2015 by Arnold Neumaier (15,787 points) [ revision history ]
edited Mar 30, 2015 by Arnold Neumaier
+ 1 like - 0 dislike

Start with the lecture notes at the top of Slava Rychkov's blog, http://sites.google.com/site/slavarychkov/home

This post imported from StackExchange Physics at 2015-03-27 18:49 (UTC), posted by SE-user user1504
answered Mar 25, 2015 by user1504 (1,110 points) [ no revision ]
+ 1 like - 0 dislike

If you have not seen it yet, conformal bootstrap in $1+1$ is extremely powerful, and in many cases essentially determine the whole theory. Everything is done analytically. Recent works of higher-dimensional generalizations share many basic features with the $1+1$ version, so it seems not a bad idea to start from there.

This post imported from StackExchange Physics at 2015-03-27 18:49 (UTC), posted by SE-user Meng Cheng
answered Mar 25, 2015 by Meng (550 points) [ no revision ]

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ysics$\varnothing$verflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...