Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,082 questions , 2,232 unanswered
5,354 answers , 22,792 comments
1,470 users with positive rep
820 active unimported users
More ...

  How can one prove that there cannot exist a conformal primary, in the case of free field theory, that doesn't saturate the unitarity bound?

+ 3 like - 0 dislike
2599 views

In free field theory, the full list of conformal primaries, is given by the Twist-2 operators. These have $\Delta = l+2$, which is also the saturation condition for the unitarity bound for $l \neq 0$. So, excepting the $l=0$ twist operator, all others saturate the bound.

How can one prove that for $l>0$, one cannot construct a conformal primary with $\Delta > l+2$ ? In other words, how to prove that the twist two operators are the only ones that occur in the $\phi \times \phi$ OPE.

This post imported from StackExchange Physics at 2015-04-17 12:32 (UTC), posted by SE-user Srivatsan Balakrishnan
asked Apr 15, 2015 in Theoretical Physics by Srivatsan Balakrishnan (30 points) [ no revision ]
Since everyone uses different notations, it would be nice if you explained what the symbols actually mean.

This post imported from StackExchange Physics at 2015-04-17 12:32 (UTC), posted by SE-user ACuriousMind
That's right.. I will just add it in this comment..

This post imported from StackExchange Physics at 2015-04-17 12:32 (UTC), posted by SE-user Srivatsan Balakrishnan
$\Delta$ is scale dimension and $l$ is the spin of the twist-2 fields, which are defined by $\Delta -l=2$. I have found a reference which explains a solution to my question: arxiv.org/pdf/hep-th/0011040v3.pdf In particular, the paragraph following Eq.6.19.

This post imported from StackExchange Physics at 2015-04-17 12:32 (UTC), posted by SE-user Srivatsan Balakrishnan
Please edit information like that into the question (comments are transient), and if you've found your answer, you might consider answering your own question.

This post imported from StackExchange Physics at 2015-04-17 12:32 (UTC), posted by SE-user ACuriousMind

1 Answer

+ 2 like - 0 dislike

Here are a couple quick and dirty ways to count these operators:

  1. Compute the conformal block expansion of the four-point function $\langle \phi\phi\phi\phi\rangle$. This will only contain blocks with $\Delta-\ell=d-2$. This is done in http://arxiv.org/abs/1009.5985, equation 64.
  2. Compute the character of the conformal group acting on operators in the theory. By decomposing this character into characters of irreducible representations of the conformal group, you can read off the conformal primaries. See http://arxiv.org/abs/hep-th/0508031 for an introduction to conformal characters.

However, the free theory is simple enough that we can just do the analysis from scratch.

An operator in the free theory is built from a string of derivatives $\partial_\mu$ and $\phi$'s. It's easy to see that the only operators appearing in the $\phi\times\phi$ OPE have $\phi$ number 0 (the unit operator) or 2. The case of $\phi$ number 2 is the most interesting. These are operators of the form $\partial\dots\partial\phi\partial\dots\partial\phi$.

Recall that any operator of the form $\partial_\mu \mathcal{O}$ (where $\mathcal{O}$ is any operator) is a descendant. Let us consider the space of all operators modulo descendant operators. Equivalence classes in this space will be in 1 to 1 correspondence with conformal primaries.

In this quotient space, we have $\partial(A B) = \partial A B + A\partial B \sim 0$ (where $\sim$ means "is equivalent to"). Using this relation, we can move derivatives from one $\phi$ to the other, modulo descendants. Let us put all the derivatives on the right-hand $\phi$. We now have operators of the form

$\phi \partial_{\mu_1}\cdots\partial_{\mu_\ell}\partial^{2n}\phi$

However, the equation of motion says that $\partial^2 \phi=0$, so we're left with

$\phi\partial_{\mu_1}\cdots\partial_{\mu_\ell}\phi$

We're not quite done. The above operator could be equivalent to a primary modulo descendants, or it could be a descendant itself. It turns out that when $\ell$ is odd, it is a pure descendant (homework exercise!). When $\ell$ is even, there is a primary in the same equivalence class. To find it, we must solve the equation $K_\mu \mathcal{O}=0$, where $K_\mu$ is the special conformal generator. The solutions are

$\phi \partial^\leftrightarrow_{\mu_1}\cdots\partial^\leftrightarrow_{\mu_\ell}\phi$

where $A\partial^\leftrightarrow_\mu B=\partial_\mu A B - A\partial_\mu B$. You can see that this is indeed equivalent to the above modulo descendants when $\ell$ is even.

Finally, note that the above operator is traceless by the equations of motion, so it transforms in a spin-$\ell$ representation of the rotation group. It has $\Delta-\ell=2\Delta_\phi=d-2$ (where $d$ is the spacetime dimension), so it satisfies the unitarity bound for $\ell>0$.

This post imported from StackExchange Physics at 2015-04-17 12:32 (UTC), posted by SE-user davidsd
answered Apr 16, 2015 by davidsd (170 points) [ no revision ]

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ysicsOv$\varnothing$rflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...