Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,082 questions , 2,232 unanswered
5,353 answers , 22,789 comments
1,470 users with positive rep
820 active unimported users
More ...

  Realistic interacting QFT construction

+ 2 like - 0 dislike
2890 views

May I ask is it true that all the interacting 4 dimension qft couldn't be constructed and defined consistently and rigorously? If we are able to rigorously constructed lower dimension qft, what are the usage of those algebraic qft since real qft is 4 dimension and have interaction. Any experts can clarify?

This post imported from StackExchange Physics at 2015-05-31 13:10 (UTC), posted by SE-user user41508
asked May 6, 2015 in Theoretical Physics by user41508 (15 points) [ no revision ]
Related: physics.stackexchange.com/q/27569/2451 and links therein.

This post imported from StackExchange Physics at 2015-05-31 13:10 (UTC), posted by SE-user Qmechanic

3 Answers

+ 2 like - 0 dislike

We are not able, at least for the moment, to define in a rigorous mathematical fashion a meaningful interacting QFT in $3+1$ dimensions that is coherent with the perturbative theory utilized by physicists (in more precise words, that satisfies the Wightman axioms).

On the contrary, some rigorous interacting QFTs can be defined in lower (spatial) dimensions. Take for example the $\phi^4$ model: it is not well-defined in $3+1$ dimensions, but it is in $1+1$ and $2+1$ (the latter for sure on finite volume, I am not sure about the infinite volume limit) as proved by Glimm and Jaffe in the sixties. This simplified models, even if they may not be physically interesting, has been analyzed in the hope that the same tools may be utilized in the meaningful theories. Unluckily, this has not been the case so far (anyways, there is still ongoing work on the subject, especially concerning the Yang-Mills theory).

However there is no rigorous "no-go theorem" that says that the interacting quantum field theories in $3+1$ dimensions cannot be constructed, but it may be possible that for some model the limitations are more fundamental and not only related to the lack of mathematical tools (see the comment by A.A. below).

This post imported from StackExchange Physics at 2015-05-31 13:10 (UTC), posted by SE-user yuggib
answered May 6, 2015 by yuggib (360 points) [ no revision ]
$\phi^4$ in 2+1 has been done in infinite volume by Feldman and Osterwalder as well as Magnen and Seneor. Also, there is a non-rigorous "no-go theorem" called the Coleman-Gross Theorem in the physics literature which excludes for instance scalar models in 3+1 (as well as pretty much anything except YM plus eventually not too many Fermions). In 4+1 there is a true theorem excluding scalar theories by Aizenman and Froehlich.

This post imported from StackExchange Physics at 2015-05-31 13:10 (UTC), posted by SE-user Abdelmalek Abdesselam
@AbdelmalekAbdesselam Thanks for the references.

This post imported from StackExchange Physics at 2015-05-31 13:10 (UTC), posted by SE-user yuggib
Hello .thanks for clarifications – user41508 8 hours ago delete Do you mean that the only 4 dimensional "constructable" and which " satisfy wightman axioms" is only yang mills? It seems that there are no satisfying 4 dimension interacting qft at all . Is it guaranteed that wightman axioms (especially the positivity condition) must be correct in 4 dimension ? Can anyone elaborate on "the tools and techniques for constructing qft in whataever dimension are the same? Thanks

This post imported from StackExchange Physics at 2015-05-31 13:10 (UTC), posted by SE-user user41508
@AbdelmalekAbdesselam: Doesn't the Aizenman-Froehlich result only exclude a certain typpe of constructions for a $\phi^4$ theory in $>4$ dimensions? It does not prove that a scalar Wightman QFT satisfying a renormalized quartic field equations does not exist.

This post imported from StackExchange Physics at 2015-05-31 13:10 (UTC), posted by SE-user Arnold Neumaier
@Arnold: yes your are right. I guess a reasonable conjecture is that a Wightman scalar field in four or more dimensions must be in the Borchers class of a generalized free field. The AF result does not quite prove that. I somewhat disagree with "a certain type". While it is correct, it might suggest that AF only excluded some kind of exotic attempt at constructing a scalar QFT in >4 dimensions. The approach which they rule out via continuum limits of Euclidean lattice theories, I think, is the most standard one.

This post imported from StackExchange Physics at 2015-05-31 13:10 (UTC), posted by SE-user Abdelmalek Abdesselam
@AbdelmalekAbdesselam: What do you think of Klauder's construction attempts, e.g., in arxiv.org/abs/1405.0332 ? Has anyone checked whether this would satisfy the Wightman axioms? Or proved that it does not?

This post imported from StackExchange Physics at 2015-05-31 13:10 (UTC), posted by SE-user Arnold Neumaier
@Arnold: I know of the existence of the article but I did not read it, so I cannot say. From a quick glance, it seems to be written in the style of physics papers instead of math ones, and it looks more like a brief research announcement. Unless JK followed it up with a paper containing complete mathematical proofs, I am afraid your question might be undecidable...

This post imported from StackExchange Physics at 2015-05-31 13:10 (UTC), posted by SE-user Abdelmalek Abdesselam
+ 2 like - 0 dislike

The tools and techniques for constructing QFTs are the same whatever the dimension. However you cannot prove conjectures which are false, no matter how powerful your tools are. The issue with 3+1 is that the class of models for which the conjecture "yeah it can be constructed" is in all likelihood true is much more narrow than in 1+1 and 2+1. Basically the only candidate is Yang-Mills theory which is a rather difficult beast. Yet there has been work on the finite volume construction by Balaban, Federbush as well as Magnen-Rivasseau-Seneor.


Edit: Just to clarify, Wightman axioms are just a definition of what a QFT is. Namely, it is a precise formulation of what the end goal of "constructing a QFT" is, but it does not tell you how to get there. Besides, these axioms are not quite appropriate for $YM_4$, not because it is in 4 dimensions but because it is a gauge theory. Nevertheless, there is a precise formulation of the $YM_4$ end goal in the $1M problem description by Jaffe and Witten (see also the follow up by Douglas, all available here).

As for methods being the same, essentially you need to construct a probability measure on a space of distributions as a weak limit of well defined measures as you remove the UV and IR cut-offs, then you get the QFT in Minkowski space using the Osterwalder-Schrader Theorem. The difficult part is the construction of the limit probability measure. The methods for doing that are the rigorous renormalization group theory or its variant called the multiscale cluster expansion method. These methods work for scalar models in $1+1$, $2+1$ as well as $YM_4$ as treated by Balaban and the other authors I mentioned above.

This post imported from StackExchange Physics at 2015-05-31 13:10 (UTC), posted by SE-user Abdelmalek Abdesselam
answered May 7, 2015 by Abdelmalek Abdesselam (640 points) [ no revision ]
Hello .thanks for clarifications

This post imported from StackExchange Physics at 2015-05-31 13:10 (UTC), posted by SE-user user41508
Do you mean that the only 4 dimensional "constructable" and which " satisfy wightman axioms" is only yang mills? It seems that there are no satisfying 4 dimension interacting qft at all . Is it guaranteed that wightman axioms (especially the positivity condition) must be correct in 4 dimension ? Can anyone elaborate on "the tools and techniques for constructing qft in whataever dimension are the same? Thanks

This post imported from StackExchange Physics at 2015-05-31 13:10 (UTC), posted by SE-user user41508
@user41508: hope my edit answers your questions.

This post imported from StackExchange Physics at 2015-05-31 13:10 (UTC), posted by SE-user Abdelmalek Abdesselam
Thanks for your answer .but one little question .how can we be sure that the end goals of construction specified by wightman axiom is correct ? Wightman axioms as far as i understand tell us what the Qft looks like under certain assumptions regarding perturbative qft is solved. But how can we know the constructed goals specified by wightman goal must be correct ? Thankyou very much

This post imported from StackExchange Physics at 2015-05-31 13:10 (UTC), posted by SE-user user41508
We can't be sure. These axioms were abstracted from what was known at the time about QFT, primarily on the basis of perturbation theory and basic physical principles like relativistic invariance. Then Nelson, Glimm and Jaffe constructed nontrivial examples in $1+1$ and $2+1$ which showed the axioms are not vacuous. What else do you want? or rather what does "correct" mean for you?

This post imported from StackExchange Physics at 2015-05-31 13:10 (UTC), posted by SE-user Abdelmalek Abdesselam
Definitely not vacuous. However I am not sure whether Wightman axioms are applicable for 4 dimension quantum field theory. It may have to relaxed or modified to take care of gauge symmetry. I guess what i mean by the physically interesting QFT are QCD QED and they are actually effective field theory. It seems AQFT or constructive QFT are not really a good candidate to construct standard model etc I think we should somehow reformulate QFT rather than serious constructing to be something for which localization works automatically

This post imported from StackExchange Physics at 2015-05-31 13:10 (UTC), posted by SE-user user41508
OK....good luck

This post imported from StackExchange Physics at 2015-05-31 13:10 (UTC), posted by SE-user Abdelmalek Abdesselam
@user41508: All conditions in the Wightman axioms with exception of the uniqueness of the vacuum are essential for any meaningful Hilbert space interpretation of a relativistic QFT. They express very basic properties of unitarity, causality and covariance of observable local fields. They are known to be inadequate for unobservable fields such as gauge fields - but even in the presence of gauge fields, the observable local fields such as currents and squared curvature must satisfy the axioms; see my review at physicsoverflow.org/21846

This post imported from StackExchange Physics at 2015-05-31 13:10 (UTC), posted by SE-user Arnold Neumaier
Note: observable local fields = gauge invariant local fields. These are sums of products of local fields at the same point with all gauge indices and spinor indices contracted, and products regularized by subtracting the singular part of the operator product expansion.

This post imported from StackExchange Physics at 2015-05-31 13:10 (UTC), posted by SE-user Arnold Neumaier
+ 1 like - 0 dislike

QFTs in spacetime of dimension $<4$ have their use in real applications - 3D theories to quantum surfaces, and 2D theories to quantum wires. There much of the exceptional behavior of lower-dimensional QFTs can be observed.

A famous example is the fractional Hall effect with anyonic (rather than Bose or Fermi) statistics.

This post imported from StackExchange Physics at 2015-05-31 13:10 (UTC), posted by SE-user Arnold Neumaier
answered May 13, 2015 by Arnold Neumaier (15,787 points) [ no revision ]

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$y$\varnothing$icsOverflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...