Write $f(x_0,E,\delta)$ for the integral, taken between $x_0+\delta$ and $x_1-\delta$, where $\delta>0$ is tiny. Then you may differentiate under the integral with respect to E to get $\frac{df}{dE}(x_0,E,\delta)$. Then you must show that the limit of the result remains well-defined when $\delta\to 0$ to get $\frac{df}{dE}(x_0,E,0)$. Now you may use the chain rule to calculate the derivative of $T(x_0)=f(x_0,U(x_0),0)$.