Although this questions is very much math related, I posted it in Physics since it is related to variational (Lagrangian/Hamiltonian) principles for dynamical systems. If I should migrate this elsewhere, please tell me.

Often times, in graduate and undergraduate courses, we are told that we can only formulate the Lagrangian (and Hamiltonian) for "potential" systems, where in the dynamics satisfy the condition that: $$ m\ddot{\mathbf{x}}=-\nabla V $$ If this is true, we can formulate a functional which is stationary with respect to the system as: $$ F[\mathbf{x}]=\int^{t}_0\left(\frac{1}{2}m\dot{\mathbf{x}}(\tau)^2-V(\mathbf{x}(\tau))\right)\,\text{d}\tau $$

Taking the first variation of this functional yields the dynamics of the system, along with a condition that effectively states that the initial configuration should be similar to the final configuration (variation at the boundaries is zero).

Now, given the functional: $$ F[\mathbf{x}]=\frac{1}{2}[\mathbf{x}^{\text{T}} * D(\mathbf{x})]+\frac{1}{2}[\mathbf{x}^{\text{T}} * \mathbf{Ax}]-\frac{1}{2}\mathbf{x}'(0)\mathbf{x}(t) $$ With $\mathbf{A}$ symmetric and $\mathbf{x}(0)$ being the initial condition, and: $$ [\mathbf{f}^{\text{T}} * \mathbf{g}]=\int^{t}_0 \mathbf{f}^{\text{T}}(t-\tau)\mathbf{g}(\tau)\,\text{d}\tau $$

If we take the first variation and assume **only** that the initial variation is zero, the functional is stationary with respect to: $$ \frac{d\mathbf{x}(t)}{dt}= \mathbf{Ax}(t) $$

This is a functional derived by Tonti and Gurtin, it represents a variational principle for linear initial value problems with symmetric state matrices and shows, as a proof of concept, that functionals *can* be derived for non-potential systems, initial value or dissipative systems.

My question is, is it possible to derive these functionals for arbitrary nonlinear systems which do not have similar initial and final configurations (and cannot have similar initial and final configurations due to dissipation)?

What sorts of conditions would exists on the dynamics of these systems?

In this example, $\mathbf{A}$ must be symmetric which already implies all of it's eigenvalues are real and thus it is a non-potential system, but there is still a functional which can be derived for it.

Any related sources, information, or answers regarding specific cases would be appreciated. If anyone needs clarification, or a proof of any result I presented here, let me know.

**Edit**: Also, a related question anyone seeing this: I'm currently just interested in the abstract aspect of the problem (solving/investigating it for the sake of it), but why are functional representations such as these useful? I know there are some numerical application, but if I have a functional which attains a minimum for a certain system, what can I do with it?

This post imported from StackExchange Physics at 2015-07-29 19:08 (UTC), posted by SE-user Ron