How can I prove:
$Tr(Ae^{Lt}B)=Tr(Be^{-Lt}A)$
where $A$ and $B$ are observables in the Schrödinger picture and $L$ is the quantum Liouville super-operator defined by:
$LA={ i \over \hbar} [H,A]$
so defining the Liouville propagator as: $A(t)= e^{Lt} A(0)$
This post imported from StackExchange Physics at 2015-08-27 17:28 (UTC), posted by SE-user pindakaas