Other form to derive (2.3) is as follows.
$$ch(V)= Tr(e^{{\frac {iV}{2\pi}}})=Tr(1)+Tr(\frac {iV}{2\pi})+\frac{1}{2!}Tr([\frac {iV}{2\pi}]^2)+$$
$$\frac{1}{3!}Tr([\frac {iV}{2\pi}]^3)+\frac{1}{4!}Tr([\frac {iV}{2\pi}]^4)+...$$
Taking the 8-form we have
$$ch(V)_{8-form}=\frac{1}{4!}Tr([\frac {iV}{2\pi}]^4)={\frac {1}{384}}\,{\frac {{\it Tr} \left( {
V}^{4} \right) }{{\pi }^{4}}}$$
Now given that
$$p_{{1}} \left( V \right) =-\frac{1}{8}\,{\frac {{\it Tr} \left( {V}^{2}
\right) }{{\pi }^{2}}}$$
$$p_{{2}} \left( V \right) ={\frac {1}{128}}\,{\frac {-2\,{\it Tr}
\left( {V}^{4} \right) + \left( {\it Tr} \left( {V}^{2} \right)
\right) ^{2}}{{\pi }^{4}}}$$
and using that $p_1(V)=0$ we obtain $Tr(V^2) = 0$ and then
$$p_{{2}} \left( V \right) ={\frac {1}{128}}\,{\frac {-2\,{\it Tr}
\left( {V}^{4} \right) }{{\pi }^{4}}}= -{\frac {1}{64}}\,{\frac {{\it Tr}
\left( {V}^{4} \right) }{{\pi }^{4}}}$$
which is equivalent to
$${\it Tr} \left( {V}^{4} \right) =-64\,p_{{2}} \left( V \right) {\pi }^{4}$$
Using this last result we obtain finally
$$ch(V)_{8-form}=-\frac{1}{6}p_{{2}} \left( V \right) $$