If you take the functional derivative of first order, i.e δS[x(t)]δx(t)=−¨x(t)+V′(x).
Then express these with dirac deltas i.e:
∫¨x(s)δ(s−t′)ds=∫x(s)¨δ(s−t′)ds where I have used to integration by parts and boundary conditions obviously vanish.
So if you take another functional derivative you get:
∫δx(s)δx(t)¨δ(s−t′)ds=∫δ(t−s)¨δ(s−t′)ds=¨δ(t−t′)
And for the other part also:
V′(x(t′))=∫V′(x(s))δ(s−t′)ds
So now we have:
∫δV′(x(s))δx(t)δ(s−t′)ds=∫V″(x(s))δ(s−t)δ(s−t′)ds=V″(x(t))δ(t−t′)
So if we gather all the terms we get:
−¨δ(t−t′)+V″(x(t))δ(t−t′)
Which is a rigorous treatment of the maple calculation.