Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

206 submissions , 164 unreviewed
5,103 questions , 2,249 unanswered
5,355 answers , 22,801 comments
1,470 users with positive rep
820 active unimported users
More ...

  Doubt while computing the animalous dimension of $\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi\bar{\psi}\gamma^{\nu}\partial_{\nu}\psi$

+ 3 like - 0 dislike
707 views

I am following the conventions of http://isites.harvard.edu/fs/docs/icb.topic1146665.files/III-9-RenormalizationGroup.pdf. Consider the QED Lagrangian

$$\mathcal{L}=-\frac{1}{4}Z_3F_{\mu\nu}^2+Z_2\bar{\psi}i\gamma^{\mu}\partial_{\mu}\psi-Z_2Z_mm\bar{\psi}\psi+Z_eZ_2\sqrt{Z_3}e\bar{\psi}\gamma^{\mu}A_{\mu}\psi+\sum^jC_j\mathcal{O}_j$$

where $\mathcal{O}_j=Z_j\partial^n\gamma^mA_{\mu}\ldots{}A_{\nu}\bar{\psi}\ldots\psi$ are operators with all fields evaluated at the same point that have any number of photons, fermions, gamma matrices, factors of the metric... and analytic dependence on derivatives. Everything is written using renormalized fields. Consider in particular the operator

$$\mathcal{O}=Z\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi\bar{\psi}\gamma^{\nu}\partial_{\nu}\psi$$

I want to get the anomalous dimension of this operator at one loop. I know that in order to do that I need to get $Z$ but I am clueless of how to proceed. I have the feeling that I have to consider a correlation function but I don't know which.  Any indication wouldbe greatly appreciated.

asked Oct 29, 2015 in Theoretical Physics by Dmitry hand me the Kalashnikov (735 points) [ revision history ]

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ysi$\varnothing$sOverflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...