# Commutation and Anticommutation relations in lattice QCD

+ 3 like - 0 dislike
374 views

The article "Construction of a selfadjoint, strictly positive transfer matrix for euclidean lattice gauge theories" (Lüscher 1977), about lattice QCD, says the following:

> The fermion Hilbert space $\mathscr{H}_F$ is the Fock space built from an operator spinor field $\hat{\chi}_n$ which satisfies the usual canonical anticommutation relations:
> $$\{\hat{\chi}_{n,\alpha},\hat{\chi}^\dagger_{m,\beta} \}=\delta_{n,m} \delta_{\alpha,\beta}\qquad[...]\tag{11}$$
> The field operator $\hat{\psi}$ acts in $\mathscr{H}_F \otimes \mathscr{H}_G$.

(This is the hilbert space of fermions tensor product the hilbert space of the gauge fields.)

> It does _not_ have a canonical anticommutator, but:
> $$\{\hat{\psi}_{n,\alpha},\hat{\psi}^\dagger_{m,\beta} \}= B^{-1}_{n\alpha,m\beta}\qquad [...]\tag{12}$$
> The matrix $B_{n\alpha,m\beta}$ depends on the gauge field and is given by
> $$B_{n\alpha,m\beta} = \delta_{n,m}\delta_{\alpha,\beta} - K \sum_{j=1,2,3} U(n,j)_{\alpha,\beta}\delta_{n+\hat{j},m}+U(m,j)^{\dagger}_{\alpha,\beta}\delta_{m+\hat{j},n}\tag{13}$$

Then the article says in equation (14) that the relation between the field $\psi$ and the canonical field $\chi$ is
$$\psi_{n\alpha} = \sum_{m\beta} (B^{-1/2})_{n\alpha,m\beta} \chi_{m,\beta}$$
where $n$ and $m$ are the lattice sites, $U$ are the links variables (the gauge fields), $K$ is the Wilson hopping parameter, and the action is supposed to be the improved Wilson action:
$$S_F= \sum_{n} \biggl\{\bar{\psi}(n)\psi(n)-K \sum_{j=1,2,3}\bar{\psi}(n) U(n,j)(1-\gamma_j)\psi(n+\hat{j})+\bar{\psi}(n+\hat{j})U(n,j)^{\dagger}(1+\gamma_j)\psi(n) \biggr\}$$

How can these equations be justified? I have tried for days (without any success) to come up with an explanation nor I have found any demonstration from other sources for these assertions.
Especially on why the anticommutator of the fields is $B^{-1}$.

 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:p$\hbar$ys$\varnothing$csOverflowThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). To avoid this verification in future, please log in or register.