Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,082 questions , 2,232 unanswered
5,353 answers , 22,789 comments
1,470 users with positive rep
820 active unimported users
More ...

  Rotating wave approximation example other than Jaynes Cumming model

+ 3 like - 0 dislike
908 views

Is the rotating wave approximation only valid in the interaction picture?

In the Jaynes-Cumming model, the interaction Hamiltonian is simplified in the rotating wave approximation. Is the rotating wave approximation needed in deriving a master equation which does not involve the Jaynes-Cumming interaction Hamiltonian?

asked Jun 28, 2016 in Theoretical Physics by phi (20 points) [ revision history ]
edited Jun 28, 2016 by phi

1 Answer

+ 2 like - 0 dislike

The rotating wave approximation is used not only in the(original) Jaynes–Cummings model - which is just one of the simplest models where it applies - but whenever a particular influential frequency must be cancelled analytically. Thus it is always used in combination with the interaction picture. 

A few pointers to related topics:

limitations of the RWA: http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.50.966

generalization of the RWA: http://arxiv.org/abs/0706.2087

Solving Jaynes–Cummings like models exactly without RWA:  http://arxiv.org/abs/1011.3280, http://arxiv.org/abs/1403.5893, http://arxiv.org/abs/1404.7834

answered Jun 28, 2016 by Arnold Neumaier (15,787 points) [ revision history ]

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ysic$\varnothing$Overflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...