# Conformal group in 2D being a subgroup of Diff/Weyl - Polchinksi's 'String Theory'

+ 2 like - 0 dislike
641 views

In the appendix on page 364 of 'String Theory', Polchinski defines the conformal group (Conf) in two dimensions to be the set of all holomorphic maps. On page 85 he explains how Conf is a subgroup of the direct product of the diffeomorphism (diff) and Weyl groups, denoted as (diff $\times$ Weyl) (here, diffeomorphisms refer to general coordinate transformations).

This is shown by first showing that Conf is a subgroup of Diff, by choosing the transformation function, $f$ to be holomorphic ($f(z)$). This is followed by showing that specific Weyl transformations with Weyl function \begin{equation} \omega=\textrm{ln}|\partial_zf| \end{equation}
can undo the conformal transformation.

This seems to imply that Conf is a subgroup of Weyl. In other words, Conf is a subgroup of diff, and Conf is a subgroup of Weyl. This then implies that Conf is a subgroup of (diff $\times$ Weyl).

However, in this post, Lubos Motl mentions that the conformal group is NOT a subgroup of the Weyl group. Why is there this inconsistency?

This post imported from StackExchange Physics at 2016-07-29 21:43 (UTC), posted by SE-user Mtheorist
1. Weyl group does not mean what you think it means. 2. I don't understand how you think that the fact that the effect of conformal transformations on the metric can be undone by Weyl transformations implies they are a subset of Weyl transformations, which explicitly only act on the metric, while a conformation transformation is always a coordinate transformation/diffeomorphism by definition.

This post imported from StackExchange Physics at 2016-07-29 21:43 (UTC), posted by SE-user ACuriousMind
As explained on page 542 of Nakahara's Geometry, Topology and Physics, the Conformal Killing Vectors which generate the conformal group can be identified with the OVERLAP of Diff_0 and Weyl, hence, it is highly unlikely that Weyl plays a trivial role here.

This post imported from StackExchange Physics at 2016-07-29 21:43 (UTC), posted by SE-user Mtheorist
Conformal transformations are coordinate transformations and as such are a symmetry of theory which are invariant under general coordinate transformations. On the other hand if you consider a theory on a fixed background metric then these conformal transformations will not be a symmetry. For this to be the case you need more: you need that the original diffeomorphism invariant theory is invariant under the Weyl symmetry. This allows you to compensate the transformation of the background metric and as a consequence to get an invariance of the action just in term of spacetime symmetries.

This post imported from StackExchange Physics at 2016-07-29 21:43 (UTC), posted by SE-user Harold
I would suggest these two papers that bring interesting insights on these questions: hep-th/9607110, 1510.08042.

This post imported from StackExchange Physics at 2016-07-29 21:43 (UTC), posted by SE-user Harold
While the Weyl transformations are conceptually different from conformal transformations, one can identity a subset of Weyl transformations with conformal transformations- notice that in order for $w$ to be able to be written as $\log |\partial_z f|$, $w$ needs to be harmonic. On the other hand, conformal transformations can only give rise to $e^{2w}$ with harmonic $w$. With this identification one thinks conformal transformations as a subgroup as Weyl transformations.

This post imported from StackExchange Physics at 2016-07-29 21:43 (UTC), posted by SE-user user110373
 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:p$\hbar\varnothing$sicsOverflowThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). To avoid this verification in future, please log in or register.