# How can I construct the Arakelov metric?

+ 2 like - 0 dislike
511 views

For a compact Riemann surface $\Sigma$ of genus $h\geq 1$, the Kawazumi-Zhang invariant is defined as,

$$\varphi(\Sigma) = \sum_{\ell >0}\frac{2}{\lambda_\ell} \sum_{m,n=1}^h \bigg\vert \int_\Sigma \phi_\ell \omega_m \wedge \bar \omega_n\bigg\vert^2$$

where we have $\Delta_\Sigma \phi_\ell = \lambda_\ell \phi_\ell$ and $\{\omega_1, \dots, \omega_n\}$ form an orthonormal basis of holomorphic forms on $\Sigma$ and it is stressed $\Delta_\Sigma$ is with respect to the Arakelov metric on $\Sigma$.

There are other equivalent ways of expressing the invariant, which may be more suitable for explicit computation. For hyperbolic Riemann surfaces of certain genus, it can also be directly related to the Faltings invariant. However, many rely on this notion of an Arakelov metric, and as a string theorist, I have not delved into Arakelov theory.

As such, I would greatly appreciate if someone could elucidate what the Arakelov metric is, perhaps explicitly for a particular manifold, given this seems to be the only thing from Arakelov theory I need to be able to compute $\varphi(\Sigma)$.

For those curious, the motivation is that the integration of $\varphi(\Sigma)$ over the moduli space of Riemann surfaces of genus $h= 2$ arises in the evaluation of an amplitude in type II string theory. asked Dec 17, 2016
recategorized Dec 17, 2016

 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:p$\hbar$ysicsOverfl$\varnothing$wThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). To avoid this verification in future, please log in or register.