Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,082 questions , 2,232 unanswered
5,353 answers , 22,789 comments
1,470 users with positive rep
820 active unimported users
More ...

  Dimensional reduction of Rozansky-Witten theory

+ 3 like - 0 dislike
744 views

Rozansky-Witten theory is a 3d topological sigma model which is used to study topological invariants of 3-manifolds. In what follows, $X$ will denote its target space.

In a question posted here - https://www.physicsoverflow.org/21310/is-there-a-mirror-of-the-rozansky-witten-theory, it is written that "One can show that if we take $X=T^∗Y$ for $Y$ a complex manifold ($T^∗Y$ is naturally holomorphic symplectic), then the dimensional reduction over a circle of the 3d Rozansky-Witten TQFT of target $X$ is the B-model 2d TQFT of target $Y$."

(Here, $T^∗Y$ refers to the total space of the cotangent bundle of $Y$. The B-model is a 2d topological sigma model first studied by Witten.)

My question is how does one show this explicitly? Why is it that the target space of the 3d theory is $T^*Y$ but the target space of its dimensional reduction to 2d is $Y$? It seems that some scalar fields which parametrize the $T^*Y$ target space should be set to zero during the dimensional reduction, but I cannot see why.

References would be appreciated.


This post imported from StackExchange Physics at 2017-06-10 16:47 (UTC), posted by SE-user Mtheorist

asked Jun 6, 2017 in Theoretical Physics by Mtheorist (100 points) [ revision history ]
edited Jun 10, 2017 by Dilaton

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ysic$\varnothing$Overflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...