Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,082 questions , 2,232 unanswered
5,355 answers , 22,793 comments
1,470 users with positive rep
820 active unimported users
More ...

  A curious issue about Dyson-Schwinger equation(DSE): why does it work so well?

+ 8 like - 0 dislike
2988 views

This question comes out of my other question "Time ordering and time derivative in path integral formalism and operator formalism", especially from the discussion with drake. The original post is somewhat badly composed because it contains too many questions, and till today I finally get energetic enough to compose another question that hopefully clarifies what was asked in that post.

I have no problem with all the textbook derivations of DSE, but after changing a perspective I found it very curious that DSE actually works, I'll take the equation of motion(EOM) of time-ordered Green's function of free Klein-Gordon(KG) field as an example and explain what I actually mean.

The EOM of free KG T-ordered Greens function is

$$(\partial^2+m^2)\langle T\{\phi(x)\phi(x')\}\rangle=-i\delta^4(x-x')\cdots\cdots(1).$$

The delta function comes from the fact that $\partial^2$contains time derivatives and it doesn't commute with T-ordering symbol. In general for Bosonic operators

$$\partial_t \langle T\{A(t)\,B(t')\}\rangle=\langle T \{ \dot A(t)B(t')\rangle+\delta (t-t')\,\langle [A(t),B(t')]\rangle \cdots\cdots(2),$$

$(1)$ can be derived from $(2)$ and the equal time canonical commutation relation of the fields.

However $(1)$ isn't very obvious from path integral approach:

$$(\partial^2+m^2)\langle T\{\phi(x)\phi(x')\}\rangle=(\partial^2+m^2)\int\mathcal{D}\phi e^{iS}\phi(x)\phi(x')\\\quad \quad \quad \qquad \qquad \qquad \qquad =\int\mathcal{D}\phi e^{iS}[(\partial^2+m^2)\phi(x)]\phi(x')\cdots\cdots(3).$$

Now if we formally and naively think

$$\int\mathcal{D}\phi e^{iS}[(\partial^2+m^2)\phi(x)]\phi(x')=\langle T\{[(\partial^2+m^2)\phi(x)]\phi(x')\}\rangle\cdots\cdots(4),$$

with the notation $\langle\cdots\rangle$ always denoting expectation value in operator approach. Then the final result will be 0(due to the field equation) instead of $-i\delta^4(x-x')$, and a result like equation(2) cannot be obtained.

As drake has pointed out, this is because of the ambiguity in the definition of the equal time operator product when time derivative is present in the path integral, it's very important(e.g. CCR in path integral) to define clearly the time derivative on time lattice, that is, the discretization. There are 3 possible definitions of $\dot \phi$(omitting the spatial variables):

(a)forward derivative $$\dot \phi(t)=\frac{\phi(t+\epsilon^+)-\phi(t)}{\epsilon^+}$$;

(b)backward derivative $$\dot \phi(t)=\frac{\phi(t)-\phi(t-\epsilon^+)}{\epsilon^+}$$

(c)centered derivative $$\dot \phi(t)=\frac{\phi(t+\epsilon^+)-\phi(t-\epsilon^+)}{2\epsilon^+}=\frac{1}{2}(\text{forward}+\text{backward})$$

These different time discretizations will lead to different equal-time operator orderings(see Ron Maimon's answer in this post ), respectively they are:

(a)$$\int\mathcal{D}\phi e^{iS}\dot \phi(t)\phi(t)=\langle \dot \phi(t)\phi(t)\rangle$$

(b)$$\int\mathcal{D}\phi e^{iS}\dot \phi(t)\phi(t)=\langle \phi(t)\dot \phi(t)\rangle$$

(c)$$\int\mathcal{D}\phi e^{iS}\dot \phi(t)\phi(t)=\frac{1}{2}[\langle \dot \phi(t)\phi(t)\rangle+\langle \phi(t)\dot \phi(t)\rangle]$$

With these in mind, we can now get equation $(1)$ from path integral(I'll just show it for the point of equal time, because for $t\neq t'$ there isn't any inconsistency): first I take definition (c) for $\dot \phi$, but define $\ddot\phi$ using forward derivative(which I agree is contrived), so we have

$\int\mathcal{D}\phi e^{iS}\ddot \phi(t)\phi(t)\equiv\int\mathcal{D}\phi e^{iS}\frac{1}{\epsilon^+}[\dot \phi(t+\epsilon^+)-\dot \phi(t)]\phi(t) =\frac{1}{\epsilon^+}\{\langle\dot \phi(t+\epsilon^+)\phi(t)\rangle-\frac{1}{2}\langle \dot \phi(t)\phi(t)\rangle-\frac{1}{2}\langle \phi(t)\dot \phi(t)\rangle\}\\ =\frac{1}{\epsilon^+}\{\langle \dot \phi(t+\epsilon^+)\phi(t)\rangle-\langle \dot \phi(t)\phi(t)\rangle+\frac{1}{2}\langle [\dot \phi(t),\phi(t)]\rangle\}\\ =\langle \ddot \phi(t)\phi(t)\rangle+\frac{1}{2\epsilon^+ }\langle[\dot \phi(t),\phi(t)]\rangle=\langle \ddot \phi(t)\phi(t)\rangle+\frac{1}{2\epsilon^+ }\delta^3(\mathbf{x}-\mathbf{x'})\cdots\cdots(5)$

Now we can formally think $\lim_{\epsilon^+\to 0}\frac{1}{2\epsilon^+}=\delta(0)$ because $\delta (t)= \lim_{\epsilon^+\to 0}\,{1\over 2\epsilon^+}\,e^{-\pi\,t^2/(4\,{\epsilon^+}^2)}$. So $(5)$ becomes

$$\int\mathcal{D}\phi e^{iS}\ddot \phi(t)\phi(t)=\langle \ddot \phi(t)\phi(t)\rangle+\delta(0)\delta^3(\mathbf{x}-\mathbf{x'})\cdots\cdots(6)$$

The rest is trivial, just apply the spatial derivatives, add it to $(6)$ and apply the field equation, then $(1)$ will be reproduced. The above derivation is mostly due to drake, in a more organized form.

Now it's clear that carefully defining time-derivative discretization is crucial to get the correct result, a wrong discretization won't give us $(1)$. However the derivation of DSE makes absolutely no reference to any discretization scheme, but it always gives a consistent result with the operator approach, why does it work so well?

Many thanks to who are patient enough to read the whole post!

UPDATE: Recently I had a lucky chance to communicate with Professor Dyson about this problem. His opinion is that neither these manipulations nor DSE is true math, because of the lack of mathematical rigor of the underlying theory, so there could be situations where DSE might just fail too, but unfortunately he couldn't immediately provide such an example. Although not very convinced(in the sense that even there's such an example, I still think the "degrees of naivety" of different approaches can be discerned, DSE is clearly more sophisticated and powerful than a direct application of $\partial^2+m^2$ ), I'd be partially satisfied if someone can provide a situation where DSE fails .

This post imported from StackExchange Physics at 2017-11-26 12:33 (UTC), posted by SE-user Jia Yiyang
asked Aug 21, 2013 in Theoretical Physics by Jia Yiyang (2,640 points) [ no revision ]
Most voted comments show all comments
@user10001: But in deriving equation (1) from operator approach we did make use of $\langle T\{[(\partial^2+m^2)\phi(x)]\phi(x')\}\rangle=0$

This post imported from StackExchange Physics at 2017-11-26 12:33 (UTC), posted by SE-user Jia Yiyang
@Jia Yiyang I am not sure but i think any derivation of (1) making use of this assumption can't be correct. For a free field we can anyway derive (1) by actually first computing the time ordered expression (using mode expansion of fields) and then verifying that it satisfies (1)

This post imported from StackExchange Physics at 2017-11-26 12:33 (UTC), posted by SE-user user10001
@JiaYiyang : What I want to say is that, for instance, if we look at the last term of the equation $(2)$, which is a commutator of operators at equal time, you are not able to represent that with a path integral, in choosing some standard definition. In Wikipedia, they made an analogy with Brownian motion, and they used 2 different formulations, and take [2]-[1], ok, but this is not rigourous, because we use 2 different standards. A more rigourous way would be to consider stochastic calculus (Ito calculus), because one may define correctly white noise correlations and all that.

This post imported from StackExchange Physics at 2017-11-26 12:33 (UTC), posted by SE-user Trimok
@Trimok: I did say I agree using two different standards is contrived and artificial, but I wouldn't say it's not rigorous, because two different standards are used on two different objects: we just require centered version for 1st derivative of fundamental field, forward version for 2nd derivative, I don't see any contradiction here . No matter how contrived it is, it shows that it can be done in path integral and a direct computation can be made consistent with operator approach. However DSE is somewhat a detour to prove (1) and did nothing like carefully defining time derivative,

This post imported from StackExchange Physics at 2017-11-26 12:33 (UTC), posted by SE-user Jia Yiyang
,on which our direct computation(presumably more "fundamental") depends sensitively, yet it always gives the correct result. I find this very curious. @Trimok

This post imported from StackExchange Physics at 2017-11-26 12:33 (UTC), posted by SE-user Jia Yiyang
Most recent comments show all comments
I think that, more generally, you cannot represent commutators of operators at equal time by a path integral.

This post imported from StackExchange Physics at 2017-11-26 12:33 (UTC), posted by SE-user Trimok
I think correlation function of any product of fields in path integral can be written equal to the expectation value of the corresponding time ordered expression of quantum fields. So in particular equation (4) is correct. But RHS of (4) is still not zero. I guess the rule is that whenever there is an integral or differential operator expression inside time ordering then one should use discretized version of the expression appearing inside time ordering. So the issue is to correctly interpret the time ordering expression, and not the path integral

This post imported from StackExchange Physics at 2017-11-26 12:33 (UTC), posted by SE-user user10001

1 Answer

+ 5 like - 0 dislike

TL;DR: The main reason why the naive path integral derivation of SD eqs. works well beyond what could be expected is that both concepts employ the same underlying notion of time ordering, namely the covariant time ordering $T_{\rm cov}$.

I) In the main part of this answer we would like to investigate in more detail some formal aspects of the correspondence between

$$ \text{Path integral formalism}\qquad \longleftrightarrow \qquad \text{Operator formalism},\tag{1} $$

in particular the cohabitation of, on one hand the Schwinger-Dyson (SD) equations, and on another hand, the Heisenberg's equations of motion (eom). The correspondence (1) is notoriously subtle, see e.g. Ref. 1. and this Phys.SE post. For a general interacting field theory, both sides of the path integral/operator correspondence (1) are typically not rigorously defined, cf. e.g. Ref. 1. Both sides of the correspondence may in principle receive quantum corrections due to operator ordering problems. So it is difficult to come with reliable statements at this formal level.

To simplify the discussion and gain intuition, we are going to make some assumptions.

  1. We are going to consider free (quadratic) theories only. OP's example is covered by this. Free theories have the advantage that we can present explicit formulas.

  2. It is most economically to argue via the Hamiltonian (as opposed to the Lagrangian) formulation, since we then are only going to have one (as opposed to two) time derivatives. So that's what we are going to do. (Also for simplicity we ignore cases with singular Legendre transformations. Then it is always possible to (Gaussian) integrate out the momenta to get to the corresponding Lagrangian formulation, if that's what one wants.)

  3. Also we treat field theory formally like point mechanics. All spatial coordinates are suppressed via DeWitt condensed notation. Only the time-variable $t$ is manifestly kept. Thus our variables are $$ z^I, \qquad I~\in~ \{1, \ldots, 2N\},\tag{2} $$ and they depend on time $t$, where $N$ could be infinite.

  4. Also to avoid annoying sign factors, we restrict attention to theories with only Grassmann-even variables.

  5. Furthermore, we assume for simplicity (or via Darboux's Theorem) that the equal-time Poisson bracket is constant and $z$-independent $$\omega^{IK} ~=~ \{ z^I(t),z^K(t) \}_{PB}, \qquad I,K~\in~\{1, \ldots, 2N\}. \tag{3} $$

Much of the above assumptions can be relaxed, but we will not discuss that here.

II) Classically, with the above assumptions, the Hamiltonian action reads

$$ S_H[z;J]~=~ \int dt\ L_H(z(t);\dot{z}(t);J(t)),\tag{4} $$

where the Hamiltonian Lagrangian is

$$ L_H(z;\dot{z};J)~=~\frac{1}{2} z^I\omega_{IK} \dot{z}^K - H(z,J),\tag{5} $$

and the Hamiltonian is quadratic

$$ H(z,J)~=~H_0(z) -J_I z^I, \qquad H_0(z)~:=~ \frac{1}{2} z^I h_{IK} z^K. \tag{6} $$

The Euler-Lagrange derivatives (with an index raised by the symplectic metric $\omega^{IL}$) correspond to Hamilton's eom

$$ 0~\approx~\omega^{IK}\frac{\delta S_H[z;J]}{\delta z^K(t)} ~=~\dot{z}^I(t) - \{z^I(t),H(z(t),J(t))\}_{PB} $$ $$ ~=~\left(\delta^I_K\frac{d}{dt}- h^I{}_K\right)z^K(t) + \omega^{IK} J_K(t). \tag{7} $$

(Here the $\approx$ sign means equality modulo classical equations of motion.) Also we have defined the matrix

$$ h^I{}_L~:=~\omega^{IK} h_{KL}. \tag{8} $$

In the corresponding operator formalism, the Hamilton's eom (7) turns into Heisenberg's eom, which is an operator identity.

III) The Hessian reads

$$ {\cal H}_{IK}(t,t^{\prime})~:=~\frac{\delta^2 S_H[z;J]}{\delta z^I(t)\delta z^K(t^{\prime})} ~=~ \omega_{IK}\delta^{\prime}(t-t^{\prime}) -h_{IK}\delta(t-t^{\prime})$$ $$~=~\omega_{IL}\left(\delta^L_K\frac{d}{dt}- h^L{}_K\right)\delta(t-t^{\prime}).\tag{9} $$

The corresponding Green's function $G={\cal H}^{-1}$ is the inverse of the Hessian (9):

$$ G^{IK}(t,t^{\prime})~=~\frac{1}{2} {\rm sgn}(t-t^{\prime})\left(e^{(t-t^{\prime})h}\right)^I{}_L ~\omega^{LK}, \tag{10} $$

$$ \left(\delta^I_L\frac{d}{dt}- h^I{}_L\right)G^{LK}(t,t^{\prime})~=~\omega^{IK}\delta(t-t^{\prime}). \tag{11} $$

IV) We define the partition function

$$ Z[J]~:=~ \int\![dz] e^{\frac{i}{\hbar}S_H[z;J]} ~=~ e^{\frac{i}{\hbar}W_c[J]} $$ $$~=~ \int\![dz] \exp\left[\frac{i}{2\hbar}\iint \! dt~dt^{\prime}~z^I(t) ~{\cal H}_{IK}(t,t^{\prime})~ z^K(t^{\prime}) + \frac{i}{\hbar}\int \! dt~J_I(t) z^I(t)\right]$$ $$~=~Z[0]\exp\left[-\frac{i}{2\hbar} \iint \! dt~dt^{\prime}~J_I(t) ~G^{IK}(t,t^{\prime})~ J_K(t^{\prime})\right] ,\tag{12} $$

and the generator of connected Feynman diagrams

$$ W_c[J]~:=~\frac{\hbar}{i}\ln Z[J] ~=~ W_c[0]- \frac{1}{2} \iint \! dt~dt^{\prime}~J_I(t) ~G^{IK}(t,t^{\prime})~ J_K(t^{\prime}) ,\tag{13} $$

whose explicit form follows from Gaussian integration. The quantum-average/expectation-value in the Heisenberg picture is defined as

$$\left< T_{\rm cov}\{F[\widehat{z}]\} \right>_J ~=~ \frac{1}{Z[J]}\int\![dz]~F[z]~e^{\frac{i}{\hbar}S_H[z;J]} ~=~\frac{1}{Z[J]} F\left[ \frac{\hbar}{i} \frac{\delta}{\delta J} \right] Z[J] .\tag{14} $$

Here $T_{\rm cov}$ is covariant time-ordering, i.e. time-differentiations inside its argument should be taken after/outside the usual time ordering $T$. Here time-ordering $T$ is defined as

$$T\left\{\widehat{A}(t)\widehat{B}(t^{\prime})\right\}~:=~ \theta(t-t^{\prime})\widehat{A}(t)\widehat{B}(t^{\prime})+\theta(t^{\prime}-t)\widehat{B}(t^{\prime})\widehat{A}(t). \tag{15} $$

It is crucial that time-differentiation and time-ordering do not commute:

$$T_{\rm cov}\left\{\frac{d\widehat{A}(t)}{dt}\widehat{B}(t^{\prime})\right\} ~:=~\frac{d}{dt}T\left\{\widehat{A}(t)\widehat{B}(t^{\prime})\right\}$$ $$~=~ T\left\{\frac{d\widehat{A}(t)}{dt}\widehat{B}(t^{\prime})\right\}+\delta(t-t^{\prime})[\widehat{A}(t),\widehat{B}(t^{\prime})], \tag{16}$$

but instead give rise to equal-time commutator (contact) terms.

It is important to realize that the time derivatives inside the Boltzmann factor $e^{\frac{i}{\hbar}S_H[z;J]}$ in the path integral should respect the underlying time slicing procedure. See e.g. this and this Phys.SE answer. This induces the covariant time-ordering $T_{\rm cov}$ in eq. (14).

The 1-point function reads

$$ \left< \widehat{z}^I(t)\right>_J ~=~ \frac{\delta W_c[J]}{\delta J_I(t)} ~=~ -\int \!dt^{\prime} ~G^{IK}(t,t^{\prime})~J_K(t^{\prime}), \tag{17} $$

while the time-ordered 2-point function reads

$$ \left< T_{\rm cov}\{ \widehat{z}^I(t)\widehat{z}^K(t^{\prime}) \}\right>_J ~=~ -\frac{\hbar^2}{Z[J]} \frac{\delta^2 Z[J]}{\delta J_I(t)\delta J_K(t^{\prime})}$$ $$~=~\frac{\delta W_c[J]}{\delta J_I(t)}\frac{\delta W_c[J]}{\delta J_K(t^{\prime})}+\frac{\hbar}{i}\frac{\delta^2 W_c[J]}{\delta J_I(t)\delta J_K(t^{\prime})}$$ $$ ~=~\left< \widehat{z}^I(t)\right>_J \left< \widehat{z}^K(t^{\prime})\right>_J +i\hbar G^{IK}(t,t^{\prime}). \tag{18}$$

The corresponding 2-point function without time-ordering reads:

$$\left< \widehat{z}^I(t)\widehat{z}^K(t^{\prime}) \right>_J ~=~\left< \widehat{z}^I(t)\right>_J \left< \widehat{z}^K(t^{\prime})\right>_J +\frac{i\hbar}{2} \left(e^{(t-t^{\prime})h}\right)^I{}_L ~\omega^{LK}. \tag{19} $$

V) The Schwinger-Dyson (SD) equations read

$$ i\hbar\left< T_{\rm cov}\left\{\frac{\delta F[\widehat{z}]}{\delta z^I(t)} \right\}\right>_J ~=~\left< T_{\rm cov}\left\{ F[\widehat{z}]\frac{\delta S_H[\widehat{z};J]}{\delta z^I(t)}\right\}\right>_J.\tag{20} $$

The SD eqs. (20) are here formally written in the operator language, but their justification is most easily argued via the path integral formalism, cf. e.g. this Phys.SE post. The SD eqs. (20) simply reflect the fact that a path integral of a total derivative vanishes if the boundary contributions are zero

$$ 0~=~\int [dz]\frac{\delta}{\delta z^I(t)}\left\{F[z] e^{\frac{i}{\hbar}S_H[z;J]}\right\}, \tag{21} $$

cf. this Phys.SE post.

VI) Naively the rhs. of the SD-eqs. (20) is proportional to the Heisenberg eom (7), which is an operator expression that vanishes identically, so why then there is a non-zero quantum correction on the lhs. of the SD-eqs. (20)? The resolution to this apparent paradox is hidden in the fact that time-differentiation and time-ordering do not commute, cf. eq. (16). To see how this works, pick for simplicity the functional $F[z]=z^{K}(t^{\prime})$ of a single variable. (Then it is enough to use the Poisson bracket rather than the Moyal-Groenewold $\star$-product.) After raising an index by the symplectic metric $\omega^{IL}$, the SD-eqs. (20) become

$$i\hbar\omega^{IK} \delta(t-t^{\prime}) ~\stackrel{(20)}{=}~\left< T_{\rm cov}\left\{\omega^{IL}\frac{\delta S_H[\widehat{z};J]}{\delta z^L(t)}\widehat{z}^K(t^{\prime})\right\} \right>_J$$ $$ ~\stackrel{(7)}{=}~\left< \frac{d}{dt}T\left\{\widehat{z}^I(t) \widehat{z}^K(t^{\prime})\right\}\right>_J - \left< T\left\{\{\widehat{z}^I(t),H(\widehat{z}(t),J(t))\}_{PB} \widehat{z}^K(t^{\prime})\right\}\right>_J$$ $$ ~=~\left(\delta^I_L\frac{d}{dt}- h^I{}_L\right)\left< T\left\{\widehat{z}^L(t) \widehat{z}^K(t^{\prime})\right\}\right>_J +\omega^{IL} J_L(t)\left< \widehat{z}^K(t^{\prime})\right>_J $$ $$ ~\stackrel{(16)}{=}~i\hbar\omega^{IK} \delta(t-t^{\prime}) +\left< T\left\{ \underbrace{\left(\frac{d\widehat{z}^I(t)}{dt} - \{\widehat{z}^I(t),H(\widehat{z}(t),J(t))\}_{PB} \right)}_{=0}\widehat{z}^K(t^{\prime})\right\}\right>_J$$ $$~\stackrel{(7)}{=}~i\hbar\omega^{IK} \delta(t-t^{\prime}).\tag{22} $$

Eq. (22) shows how SD-eqs. (20) and Heisenberg's eom (7) can co-exist.

References:

  1. F. Bastianelli and P. van Nieuwenhuizen, Path Integrals and Anomalies in Curved Space, 2006.
This post imported from StackExchange Physics at 2017-11-26 12:33 (UTC), posted by SE-user Qmechanic
answered Sep 2, 2013 by Qmechanic (3,120 points) [ no revision ]
Wow, this is a meticulous answer, but I have to admit I don't have time to read it carefully. Hopefully I can get my business done by the end of the week then I'll start reading it. Thanks in advance!

This post imported from StackExchange Physics at 2017-11-26 12:33 (UTC), posted by SE-user Jia Yiyang
Sorry for taking so long before reading your answer. It does not seem to address my question: if one tries a "direct" computation(the method presented in my main post), one immediately see equal-time operator ordering is the annoying subtlety in path integral(in operator approach equal-time ordering is also important but manifest), SD equation does not bother to take care of this subtlety at all yet gives the correct result, this is quite puzzling to me.

This post imported from StackExchange Physics at 2017-11-26 12:33 (UTC), posted by SE-user Jia Yiyang
Maybe I should clarify a bit more: it is true SD equation is formally equivalent to operator approach, but so is a direct application of differential operators. Both are formally correct, the latter is prone to be false if one does not take care of equal-time ordering ambiguity, but the former(SDE) is correct all the time(as far as I know), which however doesn't take care of equal-time ordering at all.

This post imported from StackExchange Physics at 2017-11-26 12:33 (UTC), posted by SE-user Jia Yiyang

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ysicsOv$\varnothing$rflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...