I have a question about deriving Eq. (6.2.13) in Polchinski's string theory book volume I. It is claimed that
Now consider the path integral with a product of tachyon vertex operators, AnS2(k,σ)=⟨[eik1⋅X(σ1)]r[eik2⋅X(σ2)]r⋯[eikn⋅X(σn)]r⟩S2 This corresponds to J(σ)=n∑i=1kiδ2(σ−σi) The amplitude (6.2.6) then becomes
AnS2(k,σ)=iCXS2(2π)dδd(∑iki)×...
...exp(−∑i<jki⋅kjG′(σi,σj)−12∑ni=1k2iG′r(σi,σi))
where CXS2=X−d0(det′−∇24π2α′)−d/2S2 and G′r(σ,σ′)=G′(σ,σ′)+α′2lnd2(σ,σ′)
Eq. (6.2.6) is
Z[J]=i(2π)dδd(J0)(det′−∇24π2α′)−d/2×...
...exp(−12∫d2σd2σ′J(σ)⋅J(σ′)G′(σ,σ′))
My question is: where do X−d0 and G′r come from in Eq. (6.2.13)? I could try to plug (6.2.12) into (6.2.6) to see all other term appears, but not X−d0 nor G′r.
This post imported from StackExchange Physics at 2014-07-06 20:38 (UCT), posted by SE-user user26143