

Then, we must to prove that

The proof is as follows:
R∗aDϕ(X,Y)=Dϕ(Ra∗X,Ra∗Y)=((dϕ)h)(Ra∗X,Ra∗Y)
R∗aDϕ(X,Y)=dϕ(h(Ra∗X),h(Ra∗Y))=dϕ((h∘Ra∗)(X),(h∘Ra∗)(Y)))
Using that

we obtain
R∗aDϕ(X,Y)=dϕ((Ra∗∘h)(X),(Ra∗∘h)(Y)))=dϕ(Ra∗(h(X)),Ra∗(h(Y))))
it is to say
R∗aDϕ(X,Y)=R∗adϕ(h(X),h(Y))=(R∗a∘d)(ϕ(h(X),h(Y)))
Now using

We obtain
R∗aDϕ(X,Y)=(d∘R∗a)(ϕ(h(X),h(Y)))=d(R∗aϕ(h(X),h(Y)))
Finally, using

we obtain
R∗aDϕ(X,Y)=d(ρ(a−1)ϕ(h(X),h(Y)))=ρ(a−1)dϕ(h(X),h(Y))
R∗aDϕ(X,Y)=ρ(a−1)Dϕ(X,Y)
it is to say
R∗aDϕ=ρ(a−1)Dϕ