# The non-commutativ KdV equations

+ 0 like - 0 dislike
129 views

The non-commutativ KdV equations are

$u_t +u_{xxx}-3(u u_x+ u_x u)=0$

They can be written by a pair of Lax :

$L(u)=-\partial^2 +u$

$A(u)=4 \partial^3-6u \partial -3 u_x$

$\frac {\partial L}{\partial t}=[L,A]$

Is it an integrable system? For example, $u=a +bi +cj +dk$ has values in the Hamilton numbers $R [i,j,k]$; it is then equivalent to a set of four coupled real differential equations.

asked Sep 6, 2018
edited Sep 6, 2018

## 1 Answer

+ 3 like - 0 dislike

Yes, the noncommutative KdV equation in question is integrable, in particular in that it has infinitely many commuting symmetries and infinitely many conserved quantities which are in involution, as shown in the paper A new approach to the quantum KdV by Fuchssteiner and Chowdhury.

answered Sep 7, 2018 by (40 points)

## Your answer

 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:$\varnothing\hbar$ysicsOverflowThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). To avoid this verification in future, please log in or register.